• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高放废物深地质处置库蒙脱土对铀酰的吸附阻滞行为:分子模拟研究

杨微, 陈仁朋, 康馨, ZaouiAli

杨微, 陈仁朋, 康馨, ZaouiAli. 高放废物深地质处置库蒙脱土对铀酰的吸附阻滞行为:分子模拟研究[J]. 岩土工程学报, 2020, 42(2): 239-245. DOI: 10.11779/CJGE202002004
引用本文: 杨微, 陈仁朋, 康馨, ZaouiAli. 高放废物深地质处置库蒙脱土对铀酰的吸附阻滞行为:分子模拟研究[J]. 岩土工程学报, 2020, 42(2): 239-245. DOI: 10.11779/CJGE202002004
YANG Wei, CHEN Ren-peng, KANG Xin, Zaoui Ali. Radionuclide adsorption mechanism in buffer materials in high-level radioactive waste container: MD study[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 239-245. DOI: 10.11779/CJGE202002004
Citation: YANG Wei, CHEN Ren-peng, KANG Xin, Zaoui Ali. Radionuclide adsorption mechanism in buffer materials in high-level radioactive waste container: MD study[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 239-245. DOI: 10.11779/CJGE202002004

高放废物深地质处置库蒙脱土对铀酰的吸附阻滞行为:分子模拟研究  English Version

基金项目: 

国家自然科学基金项目 41807261

国家自然科学基金项目 51808207

国家自然科学基金项目 51608188

国家自然科学基金项目 51938005

湖南省新型省份建设专项经费项目 2019RS1030

详细信息
    作者简介:

    杨微(1986— ),女,博士,副教授,主要从事分子动力学土体微细观力学、重金属污染处置及放射性核废料阻滞吸附研究工作。E-mail:yangwei86@hnu.edu.cn

    通讯作者:

    陈仁朋, E-mail:chenrp@hnu.edu.cn

  • 中图分类号: TU43

Radionuclide adsorption mechanism in buffer materials in high-level radioactive waste container: MD study

  • 摘要: 核废料处置库在长期运行过程中,地下水渗流会引起膨润土缓冲层水化学环境改变。运用分子动力学模拟方法,揭示含蒙脱土的膨润土缓冲材料对放射性核素铀酰的吸附机理及吸附复合物微观结构。模拟得到的复合物结构展现了铀酰与蒙脱土面的3种主要吸附模式:外球吸附、单键内球吸附、双键内球吸附。定量分析了在复杂水化学环境下3种铀酰种态与蒙脱土表面形成的复合物微观结构组成。通过计算复合物与蒙脱土表面的吸附能,发现高价阳离子和碳酸根离子的存在可以促进铀酰与缓冲材料表面形成稳定吸附。
    Abstract: The buffer material plays a decisive role in preventing the radionuclide to enter into the host rock, as it is the last defense of engineered barrier system. Under very high groundwater pressure, a large amount of cations percolate through the barrier with underground water, resulting in a complicated chemical condition. Molecular dynamics simulation is performed to deeply investigate the adsorption mechanism of radionuclide species onto substituted montmorillonite (001) surface in the presence of different counterions. MD simulations exhibit three typical adsorption modes: outer-sphere complex, monodentate inner-sphere complex and bidentate inner-sphere complex. With the presence of carbonate ions and covalent cations, the U atom in uranyl can coordinate with carbonate oxygen in connection with cations to form an intensive adsorption complex with MMT surface. The thermodynamic work of adhesion between the complexes and the MMT surface is calculated to evaluate the adsorption interaction. The complexes with the carbonate and covalent cation components exhibit a relatively high adhesion with the buffer material surface.
  • 图  1   蒙脱土-铀酰溶液相互作用结构初始图

    Figure  1.   Initial model for montmorillonite-uranyl solution interaction

    图  2   铀酰离子水化前及水化后的模型结构图

    Figure  2.   Snapshots of the Uranyl and hydrated uranyl structure

    图  3   铀酰溶液与蒙脱土片层结构

    Figure  3.   Uranyl solution and clay layers

    图  4   铀酰离子与蒙脱土表面形成的典型复合物结构示意图,包.含三中典型吸附:外球、单键内球及双键内球

    Figure  4.   Snapshot of representative adsorption complexes including three typical adsorptions: outer-sphere, mono-dentate and bidentate inner-sphere complex

    图  5   碳酸根及氯离子分别存在下,蒙脱土吸附形成的典型铀酰复合物结构示意图

    Figure  5.   Snapshot of optimized adsorption uranyl complexes on MMT (001) surface with presence of carbonate and chlorite

    图  6   铀酰在不同种态中与蒙脱土表面吸附形成复合物中铀原子与配位原子间的径向分布函数

    Figure  6.   Plot of U-ligand RDFs in presence of carbonate and chlorite

    表  1   水、蒙脱土、SPC/E水及铀酰种态中各原子电荷及CLAYFF力场范德华势能参数

    Table  1   Charges and ClayFF force field parameters for water, cations, montmorillonite and radionuclides

    原子符号表示内容电荷/eε /(kcal·mol-1)σ
    Hw水中的氢0.410000
    Ow水中的氧-0.82000.15543.1655
    h土中羟基的氢0.425000
    oh土中羟基的氧-0.95000.15543.1655
    ob土中桥接四面体片硅和八面体片铝的氧-1.05000.15543.1655
    obos土中桥接四面体片硅和八面体中同质替换镁的氧-1.18080.15543.1655
    obts土中桥接四面体片中同质替换铝和八面体铝的氧-1.16880.15543.1655
    obss土桥接四面体片中同质替换铝和八面体中同质替换镁的氧-1.29960.15543.1655
    ohs土连接同质替代原子羟基中的氧-1.08080.15543.1655
    st蒙脱土四面体片中硅2.10001.8405×10-63.3020
    ao土八面体片中铝1.57501.3298×10-64.2712
    at土四面体片中铝1.57501.8405×10-63.3020
    mgo土八面体片中镁1.36009.0298×10-65.2643
    mgh土八面体片中与羟基相连的镁1.05009.0298×10-65.2643
    Na层间阳离子钠1.00.13012.3500
    K层间阳离子钾1.00.10003.3340
    Cs层间阳离子铯1.00.10003.8310
    Ba层间阳离子钡2.00.04703.8166
    Pb层间阳离子铅2.00.66503.4103
    Ca层间阳离子钙2.00.10002.8719
    Zn层间阳离子锌2.00.66502.1933
    Cl氯离子-1.00.10014.3999
    U铀酰中的釉2.50.49912.8221
    O铀酰中的氧-0.250.15543.1655
    C碳酸根中的碳0.430.05652.7570
    Oc碳酸根中的氧气-0.810.16103.0330
    下载: 导出CSV

    表  2   水、铀酰及酸根离子的电荷、键长及键角参数

    Table  2   Charges, bond and angle parameters for water, uranyl and carbonate ions

    键类型k 1/(kcal·mol-1·Å-2)rij0
    原子i原子j
    OwHw554.13491.0000
    UO554.13491.8000
    COc652.00001.2500
    键角类型k 2/(kcal·mol-1·Å-2)θijk0/deg
    原子i原子j原子k
    HwOwHw45.769109.47
    UOU150.000180.00
    OcCOc80.000126.00
    下载: 导出CSV

    表  3   单个铀酰种态分子与蒙脱土表面吸附产生典型吸附复合物的分子结构特征、范德华接触面积及吸附能

    Table  3   Complex parameters, Van der Waals contact area and work of adhesion of single radionuclide adsorbed on MMT surface in presence of different cations

    铀酰种态复合物分子结构U-Os个数U-Oc个数A2吸附能/(J·m-2)
    [UO2(H2O)5]2+[UO2(H2O)5]2+  56.6810.852
    [UO2(H2O)4(Os)]2+1 30.0671.259
    [UO2(H2O)3(Os)2]2+2 25.9421.861
    [UO2(H2O)5Cl2][Na2UO2(H2O)3Cl2]2+  39.8580.610
    [NaUO2(H2O)4Cl]2+  31.0631.119
    [NaUO2(H2O)3(Os)2Cl]2+2 38.7220.718
    [UO2(H2O)5CO3][CsUO2(H2O)2CO3(Os)]+1238.7221.172
    [BaUO2(H2O)CO3(Os)] 2+1331.6911.502
    [CaUO2(H2O)2CO3(Os)] 2+1233.5862.348
    [ZnUO2(H2O)2CO3]2+ 138.8491.851
    下载: 导出CSV
  • [1] 杨波. 中国核电发展现状及趋势[J]. 世界环境, 2014(3): 18-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SJHJ201403009.htm

    YANG Bo. Current situation and development trend of nuclear power in China[J]. World Environment, 2014(3): 18-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJHJ201403009.htm

    [2]

    ZHANG C L, WANG J, SU K. Concepts and tests for disposal of radioactive waste in deep geological formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 750-767.

    [3]

    GECKEIS H, L TZENKIRCHEN J, POLLY R, et al. Mineral-water interface reactions of actinides[J]. Chemical Reviews, 2013, 113(2): 1016. doi: 10.1021/cr300370h

    [4]

    SILVA J C G E D, CAMPOS B, AGUILAR J, et al. Adsorption of uranyl ions on kaolinite, smectite, humic acids and composite clay materials[J]. Applied Clay Science, 2013.

    [5]

    RIHS S, GAILLARD C, REICH T, et al. Uranyl sorption onto birnessite: A surface complexation modeling and EXAFS study[J]. Chemical Geology, 2014, 373(19): 59-70.

    [6]

    FERNANDES M M, BAEYENS B, D HN R, et al. U(VI) sorption on montmorillonite in the absence and presence of carbonate: a macroscopic and microscopic study[J]. Geochimica Et Cosmochimica Acta, 2012, 93: 262-277. doi: 10.1016/j.gca.2012.04.017

    [7]

    MARQUES FERNANDES M, BAEYENS B, BRADBURY M H. The influence of carbonate complexation on lanthanide/actinide sorption on montmorillonite[J]. International Journal for Chemical Aspects of Nuclear Science & Technology, 2008, 96(9-11): 691-697.

    [8]

    REEDER R J, NUGENT M, PABALAN R T. Local strcuture of uranium(VI) sorbed on clinoptilolite and montmorillonite[J]. Water-Rock Interaction, 2001: 423-426.

    [9]

    PABALAN R T, TURNER D R. Uranium(6+) sorption on montmorillonite: Experimental and surface complexation modeling study[J]. Aquatic Geochemistry, 1997, 2(3): 203-226. doi: 10.1007/BF00119855

    [10]

    YANG W, ZHENG Y, ZAOUI A. Swelling and diffusion behaviour of Na-vermiculite at different hydrated states[J]. Solid State Ionics, 2015, 282: 13-17. doi: 10.1016/j.ssi.2015.09.007

    [11]

    YANG W, ZAOUI A. Uranyl adsorption on (001) surfaces of kaolinite: A molecular dynamics study[J]. Applied Clay Science, 2013, 81(4): 98-106.

    [12]

    ZHANG C, LOU Z. Freezing of water confined in porous materials: role of adsorption and unfreezable threshold[J]. Acta Geotechnica, 2018(6): 1-11.

    [13]

    ZHANG C, LOU Z, DENG P. Contact angle of soil minerals: A molecular dynamics study[J]. Computers & Geotechnics, 2016, 75: 48-56.

    [14] 张陶娜, 徐雪雯, 董亮, 等. 分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J]. 物理化学学报, 2017(10): 2013-2021. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201710016.htm

    ZHANG Tao-na, XU Xue-wen, DONG Liang, et al. The adsorption and diffusion behaviors of uranyl on pyrophyllite at different temperatures: Molecular dynamics simulatons[J]. Acta Physico-Chemica Sinica, 2017(10): 2013-2021. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201710016.htm

    [15]

    GREATHOUSE J A, CYGAN R T. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite:  results from molecular simulations[J]. Environmental Science & Technology, 2006, 40(12): 3865.

    [16]

    KERISIT S, LIU C. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces[J]. Environmental Science & Technology, 2014, 48(7): 3899.

    [17]

    ZHENG Y, ZAOUI A, SHAHROUR I. A theoretical study of swelling and shrinking of hydrated Wyoming montmorillonite[J]. Applied Clay Science, 2011, 51(1/2): 177-181.

    [18]

    VALLET V, WAHLGREN U, SCHIMMELPFENNIG B, et al. Solvent effects on uranium(VI) fluoride and hydroxide complexes studied by EXAFS and quantum chemistry[J]. Inorganic Chemistry, 2001, 40(14): 3516-3525. doi: 10.1021/ic001405n

    [19]

    RANDALL T C, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. doi: 10.1021/jp0363287

    [20]

    GUILBAUD P, WIPFF G. Hydration of UO[sub 2[sup 2+]] cation and its NO[sub 3][sup [minus]] and 18-crown-6 adducts studied by molecular dynamics simulations[J]. Journal of Physical Chemistry, 1993, 97(21): 5685-5692.

    [21]

    GREATHOUSE J A, CYGAN R T. Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface[J]. Physical Chemistry Chemical Physics, 2005, 7(20): 3580.

    [22]

    LIU X Y, WANG L H, ZHENG Z, et al. Molecular dynamics simulation of the diffusion of uranium species in clay pores[J]. Journal of Hazardous Materials, 2013, 244/245(2): 21.

    [23]

    YANG W, ZAOUI A. Behind adhesion of uranyl onto montmorillonite surface: a molecular dynamics study[J]. Journal of Hazardous Materials, 2013, 261(20): 224.

    [24]

    KELLY S D, KEMNER K M, BROOKS S C. X-ray absorption spectroscopy identifies calcium-uranyl-carbonate complexes at environmental concentrations[J]. Geochimica Et Cosmochimica Acta, 2007, 71(4): 821-834.

    [25]

    ALLEN P G, BUCHER J J, CLARK D L, et al. Multinuclear NMR, Raman, EXAFS, and X-ray diffraction studies of uranyl carbonate complexes in near-neutral aqueous solution. X-ray structure of[C(NH2)3]6[(UO2)3(CO3)6][J]. Inorganic Chemistry, 1995, 34(19): 4797-4807.

    [26]

    MONTROLL E W, LEBOWITZ J L. The Liquid State of Matter: Fluids, Simple and Complex[M]. New York: North-Holland Pub. Co, 1982: 521.

  • 期刊类型引用(2)

    1. 戴文杰,陈永贵,李裕诚,叶为民,王琼. 深地质处置缓冲/回填材料分子动力学研究进展. 硅酸盐学报. 2025(05): 1269-1281 . 百度学术
    2. 戴文杰,陈永贵,叶为民,王琼,陈宝. 基于分子动力学的缓冲/回填材料膨胀性能研究进展. 土木工程学报. 2023(11): 91-102 . 百度学术

    其他类型引用(6)

图(6)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 8
出版历程
  • 收稿日期:  2018-11-12
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

    /

    返回文章
    返回