Radionuclide adsorption mechanism in buffer materials in high-level radioactive waste container: MD study
-
摘要: 核废料处置库在长期运行过程中,地下水渗流会引起膨润土缓冲层水化学环境改变。运用分子动力学模拟方法,揭示含蒙脱土的膨润土缓冲材料对放射性核素铀酰的吸附机理及吸附复合物微观结构。模拟得到的复合物结构展现了铀酰与蒙脱土面的3种主要吸附模式:外球吸附、单键内球吸附、双键内球吸附。定量分析了在复杂水化学环境下3种铀酰种态与蒙脱土表面形成的复合物微观结构组成。通过计算复合物与蒙脱土表面的吸附能,发现高价阳离子和碳酸根离子的存在可以促进铀酰与缓冲材料表面形成稳定吸附。Abstract: The buffer material plays a decisive role in preventing the radionuclide to enter into the host rock, as it is the last defense of engineered barrier system. Under very high groundwater pressure, a large amount of cations percolate through the barrier with underground water, resulting in a complicated chemical condition. Molecular dynamics simulation is performed to deeply investigate the adsorption mechanism of radionuclide species onto substituted montmorillonite (001) surface in the presence of different counterions. MD simulations exhibit three typical adsorption modes: outer-sphere complex, monodentate inner-sphere complex and bidentate inner-sphere complex. With the presence of carbonate ions and covalent cations, the U atom in uranyl can coordinate with carbonate oxygen in connection with cations to form an intensive adsorption complex with MMT surface. The thermodynamic work of adhesion between the complexes and the MMT surface is calculated to evaluate the adsorption interaction. The complexes with the carbonate and covalent cation components exhibit a relatively high adhesion with the buffer material surface.
-
Keywords:
- molecular dynamics /
- radionuclides /
- uranyl /
- adsorption /
- montmorillonite
-
-
表 1 水、蒙脱土、SPC/E水及铀酰种态中各原子电荷及CLAYFF力场范德华势能参数
Table 1 Charges and ClayFF force field parameters for water, cations, montmorillonite and radionuclides
原子符号 表示内容 电荷/e /(kcal·mol-1) /Å Hw 水中的氢 0.4100 0 0 Ow 水中的氧 -0.8200 0.1554 3.1655 h 土中羟基的氢 0.4250 0 0 oh 土中羟基的氧 -0.9500 0.1554 3.1655 ob 土中桥接四面体片硅和八面体片铝的氧 -1.0500 0.1554 3.1655 obos 土中桥接四面体片硅和八面体中同质替换镁的氧 -1.1808 0.1554 3.1655 obts 土中桥接四面体片中同质替换铝和八面体铝的氧 -1.1688 0.1554 3.1655 obss 土桥接四面体片中同质替换铝和八面体中同质替换镁的氧 -1.2996 0.1554 3.1655 ohs 土连接同质替代原子羟基中的氧 -1.0808 0.1554 3.1655 st 蒙脱土四面体片中硅 2.1000 1.8405×10-6 3.3020 ao 土八面体片中铝 1.5750 1.3298×10-6 4.2712 at 土四面体片中铝 1.5750 1.8405×10-6 3.3020 mgo 土八面体片中镁 1.3600 9.0298×10-6 5.2643 mgh 土八面体片中与羟基相连的镁 1.0500 9.0298×10-6 5.2643 Na 层间阳离子钠 1.0 0.1301 2.3500 K 层间阳离子钾 1.0 0.1000 3.3340 Cs 层间阳离子铯 1.0 0.1000 3.8310 Ba 层间阳离子钡 2.0 0.0470 3.8166 Pb 层间阳离子铅 2.0 0.6650 3.4103 Ca 层间阳离子钙 2.0 0.1000 2.8719 Zn 层间阳离子锌 2.0 0.6650 2.1933 Cl 氯离子 -1.0 0.1001 4.3999 U 铀酰中的釉 2.5 0.4991 2.8221 O 铀酰中的氧 -0.25 0.1554 3.1655 C 碳酸根中的碳 0.43 0.0565 2.7570 Oc 碳酸根中的氧气 -0.81 0.1610 3.0330 表 2 水、铀酰及酸根离子的电荷、键长及键角参数
Table 2 Charges, bond and angle parameters for water, uranyl and carbonate ions
键类型 k 1/(kcal·mol-1·Å-2) /Å 原子i 原子j Ow Hw 554.1349 1.0000 U O 554.1349 1.8000 C Oc 652.0000 1.2500 键角类型 k 2/(kcal·mol-1·Å-2) /deg 原子i 原子j 原子k Hw Ow Hw 45.769 109.47 U O U 150.000 180.00 Oc C Oc 80.000 126.00 表 3 单个铀酰种态分子与蒙脱土表面吸附产生典型吸附复合物的分子结构特征、范德华接触面积及吸附能
Table 3 Complex parameters, Van der Waals contact area and work of adhesion of single radionuclide adsorbed on MMT surface in presence of different cations
铀酰种态 复合物分子结构 U-Os个数 U-Oc个数 A/Å2 吸附能/(J·m-2) [UO2(H2O)5]2+ [UO2(H2O)5]2+ 56.681 0.852 [UO2(H2O)4(Os)]2+ 1 30.067 1.259 [UO2(H2O)3(Os)2]2+ 2 25.942 1.861 [UO2(H2O)5Cl2] [Na2UO2(H2O)3Cl2]2+ 39.858 0.610 [NaUO2(H2O)4Cl]2+ 31.063 1.119 [NaUO2(H2O)3(Os)2Cl]2+ 2 38.722 0.718 [UO2(H2O)5CO3] [CsUO2(H2O)2CO3(Os)]+ 1 2 38.722 1.172 [BaUO2(H2O)CO3(Os)] 2+ 1 3 31.691 1.502 [CaUO2(H2O)2CO3(Os)] 2+ 1 2 33.586 2.348 [ZnUO2(H2O)2CO3]2+ 1 38.849 1.851 -
[1] 杨波. 中国核电发展现状及趋势[J]. 世界环境, 2014(3): 18-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SJHJ201403009.htm YANG Bo. Current situation and development trend of nuclear power in China[J]. World Environment, 2014(3): 18-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJHJ201403009.htm
[2] ZHANG C L, WANG J, SU K. Concepts and tests for disposal of radioactive waste in deep geological formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 750-767.
[3] GECKEIS H, L TZENKIRCHEN J, POLLY R, et al. Mineral-water interface reactions of actinides[J]. Chemical Reviews, 2013, 113(2): 1016. doi: 10.1021/cr300370h
[4] SILVA J C G E D, CAMPOS B, AGUILAR J, et al. Adsorption of uranyl ions on kaolinite, smectite, humic acids and composite clay materials[J]. Applied Clay Science, 2013.
[5] RIHS S, GAILLARD C, REICH T, et al. Uranyl sorption onto birnessite: A surface complexation modeling and EXAFS study[J]. Chemical Geology, 2014, 373(19): 59-70.
[6] FERNANDES M M, BAEYENS B, D HN R, et al. U(VI) sorption on montmorillonite in the absence and presence of carbonate: a macroscopic and microscopic study[J]. Geochimica Et Cosmochimica Acta, 2012, 93: 262-277. doi: 10.1016/j.gca.2012.04.017
[7] MARQUES FERNANDES M, BAEYENS B, BRADBURY M H. The influence of carbonate complexation on lanthanide/actinide sorption on montmorillonite[J]. International Journal for Chemical Aspects of Nuclear Science & Technology, 2008, 96(9-11): 691-697.
[8] REEDER R J, NUGENT M, PABALAN R T. Local strcuture of uranium(VI) sorbed on clinoptilolite and montmorillonite[J]. Water-Rock Interaction, 2001: 423-426.
[9] PABALAN R T, TURNER D R. Uranium(6+) sorption on montmorillonite: Experimental and surface complexation modeling study[J]. Aquatic Geochemistry, 1997, 2(3): 203-226. doi: 10.1007/BF00119855
[10] YANG W, ZHENG Y, ZAOUI A. Swelling and diffusion behaviour of Na-vermiculite at different hydrated states[J]. Solid State Ionics, 2015, 282: 13-17. doi: 10.1016/j.ssi.2015.09.007
[11] YANG W, ZAOUI A. Uranyl adsorption on (001) surfaces of kaolinite: A molecular dynamics study[J]. Applied Clay Science, 2013, 81(4): 98-106.
[12] ZHANG C, LOU Z. Freezing of water confined in porous materials: role of adsorption and unfreezable threshold[J]. Acta Geotechnica, 2018(6): 1-11.
[13] ZHANG C, LOU Z, DENG P. Contact angle of soil minerals: A molecular dynamics study[J]. Computers & Geotechnics, 2016, 75: 48-56.
[14] 张陶娜, 徐雪雯, 董亮, 等. 分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J]. 物理化学学报, 2017(10): 2013-2021. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201710016.htm ZHANG Tao-na, XU Xue-wen, DONG Liang, et al. The adsorption and diffusion behaviors of uranyl on pyrophyllite at different temperatures: Molecular dynamics simulatons[J]. Acta Physico-Chemica Sinica, 2017(10): 2013-2021. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201710016.htm
[15] GREATHOUSE J A, CYGAN R T. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations[J]. Environmental Science & Technology, 2006, 40(12): 3865.
[16] KERISIT S, LIU C. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces[J]. Environmental Science & Technology, 2014, 48(7): 3899.
[17] ZHENG Y, ZAOUI A, SHAHROUR I. A theoretical study of swelling and shrinking of hydrated Wyoming montmorillonite[J]. Applied Clay Science, 2011, 51(1/2): 177-181.
[18] VALLET V, WAHLGREN U, SCHIMMELPFENNIG B, et al. Solvent effects on uranium(VI) fluoride and hydroxide complexes studied by EXAFS and quantum chemistry[J]. Inorganic Chemistry, 2001, 40(14): 3516-3525. doi: 10.1021/ic001405n
[19] RANDALL T C, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. doi: 10.1021/jp0363287
[20] GUILBAUD P, WIPFF G. Hydration of UO[sub 2[sup 2+]] cation and its NO[sub 3][sup [minus]] and 18-crown-6 adducts studied by molecular dynamics simulations[J]. Journal of Physical Chemistry, 1993, 97(21): 5685-5692.
[21] GREATHOUSE J A, CYGAN R T. Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface[J]. Physical Chemistry Chemical Physics, 2005, 7(20): 3580.
[22] LIU X Y, WANG L H, ZHENG Z, et al. Molecular dynamics simulation of the diffusion of uranium species in clay pores[J]. Journal of Hazardous Materials, 2013, 244/245(2): 21.
[23] YANG W, ZAOUI A. Behind adhesion of uranyl onto montmorillonite surface: a molecular dynamics study[J]. Journal of Hazardous Materials, 2013, 261(20): 224.
[24] KELLY S D, KEMNER K M, BROOKS S C. X-ray absorption spectroscopy identifies calcium-uranyl-carbonate complexes at environmental concentrations[J]. Geochimica Et Cosmochimica Acta, 2007, 71(4): 821-834.
[25] ALLEN P G, BUCHER J J, CLARK D L, et al. Multinuclear NMR, Raman, EXAFS, and X-ray diffraction studies of uranyl carbonate complexes in near-neutral aqueous solution. X-ray structure of[C(NH2)3]6[(UO2)3(CO3)6][J]. Inorganic Chemistry, 1995, 34(19): 4797-4807.
[26] MONTROLL E W, LEBOWITZ J L. The Liquid State of Matter: Fluids, Simple and Complex[M]. New York: North-Holland Pub. Co, 1982: 521.
-
期刊类型引用(2)
1. 戴文杰,陈永贵,李裕诚,叶为民,王琼. 深地质处置缓冲/回填材料分子动力学研究进展. 硅酸盐学报. 2025(05): 1269-1281 . 百度学术
2. 戴文杰,陈永贵,叶为民,王琼,陈宝. 基于分子动力学的缓冲/回填材料膨胀性能研究进展. 土木工程学报. 2023(11): 91-102 . 百度学术
其他类型引用(6)