• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑自重应力和Hansbo渗流的饱和黏土一维弹黏塑性固结分析

刘忠玉, 夏洋洋, 石明生, 张家超, 朱新牧

刘忠玉, 夏洋洋, 石明生, 张家超, 朱新牧. 考虑自重应力和Hansbo渗流的饱和黏土一维弹黏塑性固结分析[J]. 岩土工程学报, 2020, 42(2): 221-229. DOI: 10.11779/CJGE202002002
引用本文: 刘忠玉, 夏洋洋, 石明生, 张家超, 朱新牧. 考虑自重应力和Hansbo渗流的饱和黏土一维弹黏塑性固结分析[J]. 岩土工程学报, 2020, 42(2): 221-229. DOI: 10.11779/CJGE202002002
LIU Zhong-yu, XIA Yang-yang, SHI Ming-sheng, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic viscoplastic consolidation analysis of saturated clay considering gravity stress and Hansbo’s flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 221-229. DOI: 10.11779/CJGE202002002
Citation: LIU Zhong-yu, XIA Yang-yang, SHI Ming-sheng, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic viscoplastic consolidation analysis of saturated clay considering gravity stress and Hansbo’s flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 221-229. DOI: 10.11779/CJGE202002002

考虑自重应力和Hansbo渗流的饱和黏土一维弹黏塑性固结分析  English Version

基金项目: 

国家自然科学基金项目 51578511

国家自然科学基金项目 51679219

详细信息
    作者简介:

    刘忠玉(1968— ),男,博士,教授,博士生导师,主要从事岩土力学等方面的教学和科研工作。E-mail:zhyliu@zzu.edu.cn

  • 中图分类号: TU433

One-dimensional elastic viscoplastic consolidation analysis of saturated clay considering gravity stress and Hansbo’s flow

  • 摘要: 考虑地基土沿深度方向变化的自重应力,引入考虑时间效应的统一硬化(UH)本构模型描述饱和黏土固结过程中的弹黏塑性变形,同时采用Hansbo渗流方程描述固结过程中的非Darcy渗流,对太沙基饱和黏土一维固结方程进行修正,并给出有限体积法数值求解格式。通过与固结试验结果对比,验证了UH模型的适用性。然后探讨了土体自重应力、黏滞性、Hansbo渗流参数、土层厚度及外荷载大小等因素对弹黏塑性固结过程的影响。结果表明:在加载初期,土体的黏滞效应在地基不排水面附近引起了超静孔压升高的现象,且土体自重应力和Hansbo渗流对此均有增强作用,但是随外荷载的增大,这一现象有所减弱;同时,考虑土体自重应力将延缓加载初期饱和黏土地基中超静孔压的整体消散速率,但加快加载中后期饱和黏土地基的固结速率;并且,随着次固结指数、土层厚度及Hansbo渗流参数的增大,饱和黏土地基中超静孔压整体消散滞后,但增大外荷载却加快了饱和黏土地基的固结速率。
    Abstract: The unified hardening (UH) constitutive model considering time effect is introduced to describe the elastic viscoplastic deformation of saturated clay, and the Hansbo's flow equation is used to describe the non-Darcy flow through the pore in the consolidation process. Thus the Terzaghi one-dimensional consolidation equation for saturated clay is modified considering the gravity stress of soil layers along the depth direction, and the numerical analysis is performed by using the finite volume method. The applicability of UH model is verified by comparison with the oedometer tests. Then the effects of the gravity stress of soil layers, viscosity, Hansbo's flow parameters, soil thickness and external load on the elastic viscoplastic consolidation process are discussed. The numerical results show that the viscous effect of soils causes an increase of excess pore pressure near the impervious boundary of soil layers at the early stage of loading, and this effect is enhanced by both the gravity stress and the Hansbo's flow, while this phenomenon is weakened with the increase of the external load. In addition, the gravity stress of soil layers can delay the overall dissipation rate of the excess pore pressure in the soil layers at the early stage of loading, and accelerate the consolidation rate of soil layers at the middle and late stages of loading. Moreover, the dissipation of the excess pore water pressure in the soil layers is delayed with the increase of the secondary compression index, thickness of soil layers and Hansbo's flow parameters, but the consolidation rate of the soil layers is accelerated by the increase of the external load.
  • 图  1   分析模型

    Figure  1.   Schematic diagram of analytical model

    图  2   不同模型下沉降理论预测值与试验结果对比

    Figure  2.   Comparison between predicted values and experimental results of settlement theory by different models

    图  3   次固结指数Cα对固结性状的影响

    Figure  3.   Influences of secondary compression index Cα on consolidation behavior

    图  4   地基厚度H对固结性状的影响

    Figure  4.   Influences of thickness H of soil layer on consolidation behavior

    图  5   外荷载p0对固结性状的影响

    Figure  5.   Influences of external load p0 on consolidation behavior

    图  6   mi1对固结性状的影响

    Figure  6.   Influences of m and i1 on consolidation behavior

  • [1] 黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1983: 139-140.

    HUANG Wen-xi. Engineering Properties of Soil[M]. Beijing: Water Resources and Electric Power Press, 1983: 139-140. (in Chinese)

    [2]

    GIBSON R E, SCHIFFMAN R L, CARGILL K W. The theory of one-dimensional of saturated clay: II finite non-linear consolidation of think homogeneous layers[J]. Canadian Geotechnical Journal, 1981, 18(2): 280-293. doi: 10.1139/t81-030

    [3] 窦宜, 蔡正银, 盛树馨. 自重应力作用下饱和黏土的固结变形特性[J]. 岩土工程学报, 1992, 14(6): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199206003.htm

    DOU Yi, CAI Zheng-yin, SHENG Shu-xin. Consolidation characteristic of saturated clays under self-weight stress[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6): 29-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199206003.htm

    [4] 李冰河, 谢康和, 应宏伟, 等. 初始有效应力沿深度变化的非线性一维固结半解析解[J]. 土木工程学报, 1999, 32(6): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199906006.htm

    LI Bing-he, XIE Kang-he, YING Hong-wei, et al. Semi-analytical solution of 1D nonlinear consolidation considering the initial effective stress distribution[J]. China Civil Engineering Journal, 1999, 32(6): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199906006.htm

    [5] 蓝柳和. 成层软黏土地基非线性流变固结性状研究[D]. 杭州: 浙江大学, 2002.

    LAN Liu-he. Studies on the Non-Linear Rheological Consolidation Behavior of Layered Soft Clayey Soils[D]. Hangzhou: Zhejiang University, 2002. (in Chinese)

    [6]

    TAYLOR D W, MERCHANT W. A theory of clay consolidation accounting for secondary compression[J]. Journal of Mathematics and Physics, 1940, 19(3): 167-185.

    [7] 袁静, 龚晓南, 益德清. 岩土流变模型的比较研究[J]. 岩石力学与工程学报, 2001, 20(6): 772-779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200106004.htm

    YUAN Jing, GONG Xiao-nan, YI De-qing. Comparison study on rheological constitutive models[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 772-779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200106004.htm

    [8] 詹美礼, 钱家欢, 陈绪禄. 软土流变特性试验及流变模型[J]. 岩土工程学报, 1993, 15(3): 54-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199303006.htm

    ZHAN Mei-li, QIAN Jia-huan, CHEN Xu-lu. Tests on rheological behaviors of soft soil and rheological model[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 54-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199303006.htm

    [9] 高彦斌. 饱和软黏土一维非线性流变-固结耦合分析[J]. 工程力学, 2006, 23(8): 116-121.

    GAO Yan-bin. One-dimensional nonlinear creep-consolidation analysis of saturated clay[J]. Engineering Mechanics, 2006, 23(8): 116-121. (in Chinese)

    [10] 罗庆姿, 陈晓平, 王盛, 等. 软黏土变形时效性的试验及经验模型研究[J]. 岩土力学, 2016, 37(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601009.htm

    LUO Qing-zi, CHEN Xiao-ping, WANG Sheng, et al. An experimental study of time-dependent deformation behaviour of soft soil and its empirical model[J]. Rock and Soil Mechanics, 2016, 37(1): 66-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601009.htm

    [11] 刘忠玉, 杨强. 基于分数阶Kelvin模型的饱和黏土一维流变固结分析[J]. 岩土力学, 2017, 38(12): 3680-3687. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712037.htm

    LIU Zhong-yu, YANG Qiang. One-dimensional rheological consolidation analysis of saturated clay using fractional order Kelvin's model[J]. Rock and Soil Mechanics, 2017, 38(12): 3680-3687. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712037.htm

    [12]

    YIN J H, GRAHAM J. Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays[J]. Canadian Geotechnical Journal, 1989, 26(2): 199-209.

    [13] 柯文汇, 陈健, 盛谦, 等. 一个描述软黏土时效特性的一维弹黏塑性模型[J]. 岩土力学, 2016, 37(8): 2198-2205. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608010.htm

    KE Wen-hui, CHEN Jian, SHENG Qian, et al. A one-dimensional elasto-viscoplastic model for describing time-dependent behavior of soft clays[J]. Rock and Soil Mechanics, 2016, 37(8): 2198-2205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608010.htm

    [14]

    YAO Y P, KONG L M, HU J. An elastic-viscous-plastic model for overconsolidated clays[J]. Sci China Tech Sci, 2013, 56(2): 441-457.

    [15] 姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm

    YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm

    [16] 胡晶, 姚仰平. 基于考虑时间效应UH模型的一维固结分析[J]. 北京航空航天大学学报, 2015, 41(8): 1492-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201508018.htm

    HU Jing, YAO Yang-ping. 1D-consolidation analysis based on UH model considering time effect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8): 1492-1498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201508018.htm

    [17]

    HANBO S. Consolidation of clay with special reference to influence of vertical sand drains[D]. Linköping: Swedish Geotechnical Institute, 1960.

    [18] 齐添, 谢康和, 胡安峰, 等. 萧山黏土非达西渗流性状的试验研究[J]. 浙江大学学报(工学版), 2007, 41(6): 1023-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200706029.htm

    QI Tian, XIE Kang-he, HU An-feng, et al. Laboratorial study on non-Darcy seepage in Xiaoshan clay[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(6): 1023-1028. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200706029.htm

    [19] 李传勋, 谢康和, 胡安峰, 等. 考虑非达西渗流的成层地基一维固结半解析解[J]. 工程力学, 2012, 29(11): 165-169. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201211027.htm

    LI Chuan-xun, XIE Kang-he, HU Anfeng, et al. Semi-analytical solution of one-dimensional consolidation of layered soft clay with non-Darcy seepage considering time-dependent loading[J]. Engineering Mechanics, 29(11): 165-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201211027.htm

    [20] 刘忠玉, 闫富有, 王喜军. 基于非达西渗流的饱和黏土一维流变固结分析[J]. 岩石力学与工程学报, 2013, 32(9): 1937-1944. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201309029.htm

    LIU Zhong-yu, YAN Fu-you, WANG Xi-jun. One-dimensional rheological consolidation analysis of saturated clay considering non-darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1937-1944. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201309029.htm

    [21] 纠永志, 刘忠玉, 乐金朝, 等. 考虑非Darcy渗流和自重应力的一维固结分析[J]. 同济大学学报(自然科学版), 2012, 40(4): 541-548. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201204008.htm

    JIU Yong-zhi, LIU Zhong-yu, YUE Jin-chao, et al. One-dimensional consolidation with a consideration of non-Darcy flow and self-gravity stress[J]. Journal of Tongji University (Natural Science), 2012, 40(4): 541-548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201204008.htm

    [22] 李传勋, 谢康和. 基于非达西渗流的软土一维非线性固结半解析解[J]. 岩土力学, 2013, 34(8): 2181-2188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308013.htm

    LI Chuan-xun, XIE Kang-he. Semi-analytical solution of one-dimensional nonlinear consolidation with non-Darcian flow[J]. Rock and Soil Mechanics, 2013, 34(8): 2181-2188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308013.htm

    [23]

    TAYLOR D W. Fundamentals of Soil Mechanics[M]. New York: John Wiley & Sons Inc, 1948.

    [24] 李人宪. 有限体积法基础[M]. 2版.北京: 国防工业出版社, 2008.

    LI Ren-xian. Fundamental of Finite Volume Method[M]. 2nd ed. Beijing: National Defense Industry Press, 2008. (in Chinese)

    [25] 李西斌. 软土流变固结理论与试验研究[D]. 杭州: 浙江大学, 2005.

    LI Xi-bin. Theoretical and Experimental Studies on Rheological Consolidation of Soft Soil[D]. Hangzhou: Zhejiang University, 2005. (in Chinese)

    [26] 李传勋, 徐超, 谢康和. 考虑非达西渗流和应力历史的土体非线性固结研究[J]. 岩土力学, 2017, 38(1): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701013.htm

    LI Chuan-xun, XU Chao, XIE Kang-he. Nonlinear consolidation of clayed soil considering non-Darcy flow and stress history[J]. Rock and Soil Mechanics, 2017, 38(1): 91-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701013.htm

    [27] 仇玉良, 丁洲祥. 一维小变形主、次固结耦合理论模型分析[J]. 岩土力学, 2012, 33(7): 1957-1964. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207008.htm

    QIU Yu-liang, DING Zhou-xiang. Study of coupling theory of one-dimensional small-strain primary and secondary consolidation model[J]. Rock and Soil Mechanics, 2012, 33(7): 1957-1964. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207008.htm

    [28]

    WONG R C K, VARATHARAJAN S. Viscous behaviour of clays in one-dimensional compression[J]. Canadian Geotechnical Journal, 2014, 51(7): 795-809.

  • 期刊类型引用(5)

    1. 赵云,杨忠方,张朋,凌道盛. 非饱和砂土中深埋活动门试验松动土压力计算. 岩土工程学报. 2025(04): 769-778 . 本站查看
    2. 李明宇,朱康康,陈健,蔺云宏,吴龙骥,靳军伟,杨潇. 考虑土体剪切与接头剪切效应的盾构隧道纵向变形计算模型. 中国铁道科学. 2024(01): 142-154 . 百度学术
    3. 秦哲,刘文龙,武发宇,韩继欢,李为腾,冯强,刘永德. 考虑层叠拱传递效应的浅埋硬岩隧道支护力研究及应用. 岩石力学与工程学报. 2024(09): 2165-2177 . 百度学术
    4. 陈志敏,刘宝莉,陈骏,翟文浩,李文豪,王铎斌,蔡昀辰. 考虑颗粒组成与含水率的冰碛体成拱规律研究. 现代隧道技术. 2024(05): 200-209 . 百度学术
    5. 陈星欣,何明高,施文城,郭力群. 土岩复合地层盾构地中对接法刀盘拆卸不完全拱压力计算. 岩土工程学报. 2024(12): 2652-2660 . 本站查看

    其他类型引用(10)

图(6)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 15
出版历程
  • 收稿日期:  2019-04-19
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

    /

    返回文章
    返回