Stress and displacement of surrounding rock of loess tunnels based on joint strength
-
摘要: 隧道围岩应力及位移计算问题是隧道工程界中传统研究课题之一,但黄土抗拉强度在黄土隧道围岩应力及位移计算中存在的影响需要进行合理性评价。基于建立的可综合考虑黄土抗拉和抗剪特性的联合强度,开展了极限应力平衡分析,重新推导了强度破坏曲线的主应力表达式;然后重新确定了轴对称圆形隧道条件下黄土围岩塑性区半径;最后得到了隧道周边黄土围岩位移表达式。研究结果表明:在围岩塑性区应力计算与比较中,基于联合强度确定的围岩塑性区应力小于基于传统的Mohr-Coulomb理论确定的围岩塑性区应力,而塑性区半径和隧道周边围岩位移相对较大;基于拉强度建立的联合强度理论克服了Mohr-Coulomb理论高估黄土抗拉强度的缺陷,可以合理评价黄土隧道围岩应力及位移。Abstract: The stress and displacement of surrounding rock of tunnels are one of the traditional research subjects in the tunnel engineering. However the impact of tensile strength on stress and displacement of the surrounding rock of structured loess tunnels needs to be evaluated reasonably. Based on the theory of joint strength considering the tensile and shear properties of loess simultaneously, the principal stress expression for the strength failure curve is re-determined to analyze the ultimate stress equilibrium. Then, the radius of the plastic zone of the surrounding rock of loess under the axisymmetric circular tunnel is re-determined. Finally, the expression of the displacement for the surrounding rock around the tunnel is obtained. The results show that the plastic stress in the surrounding rock determined by the joint strength theory is smaller than that determined by the traditional Mohr-Coulomb theory, and the radius of the plastic zone and the displacement of the surrounding rock around the tunnel are relatively large. The joint strength theory based on tensile strength overcomes the defect of Mohr-Coulomb theory overestimating the tensile strength of loess, and it can reasonably evaluate stress and displacement of the surrounding rock.
-
Keywords:
- structured loess /
- tensile strength /
- shear strength /
- joint strength formula /
- stress /
- displacement /
- surrounding rock
-
[1] 赵彭年. 松散介质力学[M]. 北京: 地震出版社.
(ZHAO Peng-nian.Mechanics of loose medium[M]. Beijing. Earthquake Press. (in Chinese))[2] NOVA R, GABRIELI L.Soil mechanics[M]. New York: Wiley-Iste, 2010. [3] 罗固源. 岩石力学[M]. 重庆: 重庆大学出版社.
(LUO Gu-yuan.Rock mechanics[M]. Chongqing: University Press. (in Chinese))[4] 侯公羽, 牛晓松. 基于Levy-Mises本构关系及D-P屈服准则的轴对称圆巷理想弹塑性解[J]. 岩土力学, 2009, 30(6): 1555-1562.
(HOU Gong-yu, NIU Xiao-song, et al.Perfect elastoplastic solution of axisymmetric circular openings in rock mass based on Levy-Mises constitutive relation and D-P yield criterion[J]. Rock and Soil Mechanics, 2009, 30(6): 1555-1562. (in Chinese))[5] 张强, 王红英, 王水林, 等. 基于统一强度理论的破裂围岩劣化弹塑性分析[J]. 煤炭学报, 2010, 35(3): 381-386.
(ZHANG Qiang, WANG Hong-ying, WANG Shui-lin, et al.Deterioration elsto-plastic analysis of cracked surrounding rocks based on unified strength theory[J]. Journal of China Coal Society, 2010, 35(3): 381-386. (in Chinese))[6] 曾开华, 鞠海燕, 盛国君, 等. 巷道围岩弹塑性解析解及工程应用[J]. 煤炭学报, 2011, 36(5): 752-755.
(ZENG Kai-hua, JU Hai-yan, SHENG Guo-jun, et al.Elastic-plastic analytical solutions for surrounding rocks of tunnels and its engineering applications[J]. Journal of China Coal Society, 2011, 36(5): 752-755. (in Chinese))[7] 张常光, 张庆贺, 赵均海. 考虑应变软化、剪胀和渗流的水工隧道解析解[J]. 岩土工程学报, 2009, 31(12): 1941-1946.
(ZHANG Chang-guang, ZHANG Qing-he, ZHAO Jun-hai.Analytical solutions of hydraulic tunnels considering strain softening, shear dilation and seepage[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1941-1946. (in Chinese))[8] 张小波, 赵光明, 孟祥瑞. 基于Drucker-Prager屈服准则的圆形巷道围岩弹塑性分析. 煤炭学报, 2013, 38(增刊1): 30-37.
(ZHANG Xiao-bo, ZHAO Guang-ming, MENG Xiang-rui.Elastoplastic analysis of surrounding rock on circular roadway based on Drucker-Prager criterion[J]. Journal of China Coal Society, 2013, 38(S1): 30-37. (in Chinese))[9] 冯强, 范金成, 张强, 等. 基于Mohr-Coulomb准则的球形洞室围岩应变软化弹塑性分析[J]. 煤炭学报, 2014, 39(5): 836-840.
(FENG Qiang, FAN Jin-cheng, ZHANG Qiang, et al.Elastoplastic analysis of spherical cavity in strain-softening rock masses based on Mohr-Coulomb criterion[J]. Journal of China Coal Society, 2014, 39(5): 836-840. (in Chinese))[10] 李荣建, 刘军定, 郑文, 等. 基于结构性黄土抗拉和抗剪特性的双线性强度及其应用[J]. 岩土工程学报, 2013, 35(增刊2): 247-252.
(LI Rong-jian, LIU Jun-ding, ZHENG Wen, et al.A bilinear strength formula for structured loess based on tensile strength and shear strength and its application[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 247-252. (in Chinese)) -
期刊类型引用(22)
1. 陈军浩,李彧翰,张见,黄靖涵. 地铁盾构始发端垂直分段冻结加固多场演化规律. 福建理工大学学报. 2025(01): 40-47 . 百度学术
2. 卫凯,胡俊,周杰. 渗流作用下三亚河口通道管幕冻结法温度场数值模拟分析. 五邑大学学报(自然科学版). 2024(01): 60-69 . 百度学术
3. 张松,岳祖润,卢相忠,张庆武,孙铁成,胡田飞,亓源水,张俊洋. 基坑免降水开挖的组合式冻结法支护工艺研究. 铁道标准设计. 2024(02): 143-149 . 百度学术
4. 孙引浩. 渗流作用下管幕冻结法加固止水温度场时空变化规律. 铁道建筑技术. 2024(08): 50-54 . 百度学术
5. 郭长弓,高伟. 环形冻结温度场演化规律影响因素研究. 建井技术. 2024(05): 83-87 . 百度学术
6. 周杰,胡俊,刘冰. 海底隧道管幕冻结法水热耦合温度场数值模拟分析. 森林工程. 2024(06): 221-234 . 百度学术
7. 周明文,李文俊,孙翰卿. 运营地铁隧道的内钢圈加固技术研究. 广东土木与建筑. 2024(11): 62-65+109 . 百度学术
8. 王捷江,刘添俊,马春景. 隧道围岩组合预加固技术在富水软弱地层中的应用及冻胀分析. 广州建筑. 2024(S1): 11-15 . 百度学术
9. 周文,胡俊,曾晖,李珂,曾东灵,王志鑫,冯继超. 不同渗流速度对新型管幕冻结法温度场影响. 海南大学学报(自然科学版). 2023(01): 85-94 . 百度学术
10. 刘秀芝. 新型管幕预筑一体化结构施工安全控制技术研究. 铁道建筑技术. 2023(02): 179-181+190 . 百度学术
11. 李悦,张启瑞,谭建兵,李明宇,朱康康,王增辉. 管幕+CRD法隧道并行下穿对地表变形的影响. 石河子大学学报(自然科学版). 2023(02): 214-220 . 百度学术
12. 孙文昊,牛野,刘雨萌,张俊儒,孔超. 基于多跨单向板力学模型的管幕冻结法隧道初期支护参数优化方法. 铁道标准设计. 2023(08): 120-128 . 百度学术
13. 吴永哲,朱泽萱,杨平,刘红伟,吴文亮. 60 m级超长联络通道冻结法施工与实测分析. 建筑科学与工程学报. 2023(06): 148-156 . 百度学术
14. 陈湘生,付艳斌,陈曦,肖惠,包小华,庞小朝,王雪涛. 地下空间施工技术进展及数智化技术现状. 中国公路学报. 2022(01): 1-12 . 百度学术
15. 周禹暄,胡俊,熊辉,任军昊,占健健,王志鑫. 新型管幕冻结法在河堤防渗加固中的温度场分析. 煤田地质与勘探. 2022(05): 110-117 . 百度学术
16. 白天麒,叶超,李忠超,梁荣柱,肖铭钊,蔡兵华. 渗流作用下富水砂层椭圆形冻结管冻结发展规律研究. 安全与环境工程. 2022(04): 85-92 . 百度学术
17. 王涛,马骏,周国庆,许大晴,季雨坤. 冻土地层三维空间变异性表征及冻结帷幕温度特征值演化过程研究. 岩石力学与工程学报. 2022(10): 2094-2108 . 百度学术
18. 荣传新,王彬,曹祎,龙伟. 地下水对人工地层冻结过程的影响机制研究进展及展望. 建井技术. 2022(06): 1-9 . 百度学术
19. 叶超,李忠超,梁荣柱,肖铭钊,蔡兵华,吴文兵. 地下水含盐量对人工冻结效果影响分析. 水利水运工程学报. 2021(02): 78-86 . 百度学术
20. 贺铁刚. 港珠澳大桥拱北隧道冻结法施工成本管理措施. 中国集体经济. 2021(21): 73-74 . 百度学术
21. 周扬,武子寒,许程,卢萌盟,周国庆. 高温下饱和冻土一维融化热固结模型及解答. 岩土工程学报. 2021(12): 2190-2199 . 本站查看
22. 张冬梅,逄健,任辉,韩磊. 港珠澳大桥拱北隧道施工变形规律分析. 岩土工程学报. 2020(09): 1632-1641 . 本站查看
其他类型引用(21)
计量
- 文章访问数: 252
- HTML全文浏览量: 11
- PDF下载量: 102
- 被引次数: 43