• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

冻土不同拉伸试验强度差异性研究

于长一, 刘爱民, 郭炳川, 刘文彬

于长一, 刘爱民, 郭炳川, 刘文彬. 冻土不同拉伸试验强度差异性研究[J]. 岩土工程学报, 2019, 41(S2): 157-160. DOI: 10.11779/CJGE2019S2040
引用本文: 于长一, 刘爱民, 郭炳川, 刘文彬. 冻土不同拉伸试验强度差异性研究[J]. 岩土工程学报, 2019, 41(S2): 157-160. DOI: 10.11779/CJGE2019S2040
YU Chang-yi, LIU Ai-min, GUO Bing-chuan, LIU Wen-bin. Different tensile tests on difference of strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 157-160. DOI: 10.11779/CJGE2019S2040
Citation: YU Chang-yi, LIU Ai-min, GUO Bing-chuan, LIU Wen-bin. Different tensile tests on difference of strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 157-160. DOI: 10.11779/CJGE2019S2040

冻土不同拉伸试验强度差异性研究  English Version

基金项目: 天津市自然科学基金青年项目(16JCQNJC07200); 天津市自然科学基金一般项目(16JCYBJC21700)
详细信息
    作者简介:

    于长一(1988— ),男,博士,主要从事岩土非连续数值模拟算法开发及实验研究。E-mail: yu_longone@163.com。

    通讯作者:

    郭炳川,E-mail:gbc0608@163.com

Different tensile tests on difference of strength of frozen soils

  • 摘要: 冻土拉伸强度是冻土工程设计的重要指标,在试验中发现冻土单轴拉伸强度和四点弯曲拉伸强度值不一致。为此采用细观数值方法,假设细观材料参数符合Weibull分布,采用损伤模型,宏观材料性能符合线弹性假设,分别模拟了单轴拉伸试验和四点弯曲拉伸试验。引入非局部化理论,解释了其强度差异来源于材料均质度,并且定量地给出了材料特征长度和均质度之间的关系。为冻土拉伸强度测量和冻土设计提供理论基础。
    Abstract: The tensile strength of frozen soils is an important index in engineering design. In the tests, it is found that the uniaxial tensile strength of frozen soils is inconsistent with the four-point bending tensile strength. For this reason, the mesoscopic numerical method, assuming that the parameters of mesoscopic materials conform to the Weibull distribution, and the damage model are adopted. The properties of macroscopic materials conform to the linear elastic hypothesis. The uniaxial tensile tests and the four-point bending tensile tests are simulated respectively. By introducing the theory of non-localization, it is explained that the strength difference comes from the homogeneity of the materials, and the relationship between the characteristic length of the materials and the homogeneity is quantitatively given. It provides a theoretical basis for measuring the tensile strength of frozen soils and designing the frozen soils.
  • [1] V N RAZBEGIN S S V, MAKSIMYAK R V, SADOVSKII A V. Mechanical properties of frozen soils[J]. Soil Mechanics and Foundation Engineering, 1996, 33(2): 35-45.
    [2] 李宁, 程国栋, 徐学祖, 等. 冻土力学的研究进展与思考[J]. 力学进展, 2001, 31(1): 95-102.
    (LI Ning, CHENG Guo-dong, XU Xue-zu, et al.The advance and review on frozen soil mechanica[J]. Advances in Mechanics, 2001, 31(1): 95-102. (in Chinese))
    [3] 孟祥连. 青藏铁路多年冻土工程地质勘察[J]. 铁道勘察, 2006, 32(3): 28-31.
    (MENG Xiang-lian.The Geological prospecting for the permaforst engineering in the Qinghai-Tibet railway[J]. Railway Investigation and Surveying, 2006, 32(3): 28-31. (in Chinese))
    [4] 于长一. 地铁联络通道冻结法施工数值模拟分析[D]. 天津大学, 2014.
    (YU Chang-yi.Numerical simulation analysis of freezing method construction of metro communication channel[D]. Tianjin University, 2014. (in Chinese))
    [5] 叶荣华, 刘干斌, 叶俊能. 宁波轨道交通人工冻土物理力学特性试验研究[J]. 工程勘察, 2011, 39(8): 19-23.
    (YE Rong-hua, LIU Gan-bin, YE Jun-neng.Experimental study on physical and mechanical properties of artificial frozen soil in Nningbo rail transit[J]. Geotechnical Investigation & Surveying, 2011, 39(8): 19-23. (in Chinese))
    [6] TAMRAKAR S, MITACHI T, TOYOSAWA Y, et al.Tensile strength of compacted and saturated soils using newly developed tensile strength measuring apparatus[J]. Soils and Foundations, 2005, 45(6): 103-110.
    [7] 沈忠言, 王家澄, 彭万巍, 等. 单轴受拉时冻土结构变化及其机理初析[J]. 冰川冻土, 1996(3): 72-77.
    (SHEN Zhong-yan, WANG Jia-cheng, PENG Wan-wei, et al.Change in structures and its mechanisms of frozen soil under uniaxial tensile[J] Journal of Glaciology and Geocryology, 1996(3): 72-77. (in Chinese))
    [8] ZHOU G, HU K, ZHAO X, et al.Laboratory investigation on tensile strength characteristics of warm frozen soils[J]. Cold Regions Science and Technology, 2015, 113: 81-90.
    [9] 孙卓. 冻土断裂力学应力强度因子的数值模拟计算[D]. 大连: 大连理工大学, 2006.
    (SUN Zhuo.The numerical simulation of stress intensity factor in fracture mechanics of frozen soil[D]. Dalian: Dalian University of Technology, 2006. (in Chinese))
    [10] FARRELL D A, GREACEN E L, LARSON W E.The effect of water content on axial strain in a loam soil under tension and compression[J]. Soil Science Society of America Journal, 1967, 31(4): 445-450.
    [11] DAI F, XIA K, TANG L.Rate dependence of the flexural tensile strength of Laurentian granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 469-475.
    [12] ISUPOV L, MIKHAILOV S E.A comparative analysis of several nonlocal fracture criteria[J]. Archive of Applied Mechanics, 1998, 68(9): 597-612.
    [13] CHRIST M, PARK J-B.Laboratory determination of strength properties of frozen rubber-sand mixtures[J]. Cold Regions Science and Technology, 2010, 60(2): 169-175.
  • 期刊类型引用(12)

    1. 苟富刚,龚绪龙. 海相软土无侧限抗压强度曲线类型分类及影响因素. 工程地质学报. 2025(01): 20-28 . 百度学术
    2. 丁发兴,吴霞,张学民,陈雷,葛敬冉,肖杨,宫凤强,陈靖,李梓焜,刘增飞,崔昊,张训杰,吕飞. 材料强度理论研究进展述评. 铁道科学与工程学报. 2024(11): 4555-4587 . 百度学术
    3. 孟天一,张玉,刘瑾,赵阳,杨倩,丁潇,范特佳. 平面应变条件下基于Lade-Duncan强度准则中主应力条件的土压力及其适用性. 土木与环境工程学报(中英文). 2022(01): 20-27 . 百度学术
    4. 许萍,邵生俊,房凌云,孙志军. 基于空间面变化的横观各向同性破坏准则研究. 岩土工程学报. 2022(06): 1036-1043 . 本站查看
    5. 许萍,孙志军,邵生俊. 基于空间面变化的各向异性强度变化规律研究. 岩土工程学报. 2021(06): 1118-1124 . 本站查看
    6. 路德春,韩佳月,梁靖宇,田雨,杜修力. 横观各向同性黏土的非正交弹塑性本构模型. 岩石力学与工程学报. 2020(04): 793-803 . 百度学术
    7. 万征,孟达. 基于t准则的各向异性强度准则及变换应力法. 力学学报. 2020(05): 1519-1537 . 百度学术
    8. 万征,宋琛琛,孟达. 一种非线性强度准则及转换应力法. 力学学报. 2019(04): 1210-1222 . 百度学术
    9. 李成. 基于MNLD准则平面应变条件下土体的强度特性描述. 铁道科学与工程学报. 2019(08): 1955-1960 . 百度学术
    10. 万征,孟达,宋琛琛. 一种适用于岩土的扩展强度及屈服准则. 力学学报. 2019(05): 1545-1556 . 百度学术
    11. 路德春,张君鸿,梁靖宇,杜修力. 基于特征滑动面的横观各向同性土强度特性研究. 岩土工程学报. 2019(11): 2000-2008 . 本站查看
    12. 万征,宋琛琛,赵晓光. 一种横观各向同性强度准则及变换应力空间. 力学学报. 2018(05): 1168-1184 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 18
出版历程
  • 收稿日期:  2019-04-28
  • 发布日期:  2019-07-19

目录

    /

    返回文章
    返回