• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土体小应变剪切模量的现场和室内试验对比及工程应用

陈少杰, 顾晓强, 高广运

陈少杰, 顾晓强, 高广运. 土体小应变剪切模量的现场和室内试验对比及工程应用[J]. 岩土工程学报, 2019, 41(S2): 133-136. DOI: 10.11779/CJGE2019S2034
引用本文: 陈少杰, 顾晓强, 高广运. 土体小应变剪切模量的现场和室内试验对比及工程应用[J]. 岩土工程学报, 2019, 41(S2): 133-136. DOI: 10.11779/CJGE2019S2034
CHEN Shao-jie, GU Xiao-qiang, GAO Guang-yun. Comparison and application of small strain shear moduli from field and laboratory measurements[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 133-136. DOI: 10.11779/CJGE2019S2034
Citation: CHEN Shao-jie, GU Xiao-qiang, GAO Guang-yun. Comparison and application of small strain shear moduli from field and laboratory measurements[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 133-136. DOI: 10.11779/CJGE2019S2034

土体小应变剪切模量的现场和室内试验对比及工程应用  English Version

基金项目: 国家自然科学基金项目(51822809,51738010)
详细信息
    作者简介:

    陈少杰(1995— ),男,河南周口人,硕士研究生,从事土体小应变刚度特性及基坑开挖变形分析等研究。E-mail: ch_shaojie@tongji.edu.cn。

    通讯作者:

    顾晓强,E-mail:guxiaoqiang@tongji.edu.cn

Comparison and application of small strain shear moduli from field and laboratory measurements

  • 摘要: 土体小应变剪切模量G0在场地地震响应和基坑变形等计算分析中有着重要作用。统计了上海典型土层的室内共振柱试验和现场原位波速测试测得的小应变剪切模量,给出了两种试验方法下的G0的经验公式,并对比分析了室内试验和现场原位测试结果的差异。研究结果表明土体的G0值主要由土体类别、孔隙比和平均有效应力决定,且现场试验的结果远高于室内试验的结果。进一步采用HS-Small本构模型对上海新金桥广场基坑工程的开挖变形进行数值模拟,分析了小应变剪切模量对于基坑工程变形的影响。分析结果表明,采用现场原位测试测得的小应变剪切模量进行基坑变形计算的结果与现场变形监测数据更为接近。
    Abstract: The small-strain shear modulus plays an important role in the calculations of ground seismic response and deformation in deep excavations. The values of the small strain shear modulus G0 of Shanghai soils by field and laboratory tests are investigated and compared, and empirical formulas are proposed to predict the values of G0. The results indicate that G0 mainly depends on the soil type, void ratio and mean confining pressure. The values of G0 from field tests are considerately higher than those from laboratory tests. The correlation between the small strain shear moduli from field and laboratory is also proposed. The numerical analysis is also carried out to calculate the deformation in a deep excavation in Shanghai. The small strain hardening model (HSS) is used, together with the measured small strain shear modulus. The values of G0 are essential for the deformation of the excavation, and the predicted deformation using the G0 value from field measurement is more accurate than that using the laboratory data based on the measured deformation in the excavation.
  • [1] ATKINSON J H, SALLFORS G.Experimental determination of stress-strain-time characteristics in laboratory and in-situ tests[C]// Proceedings of 10th European Conference on Soil Mechanics and Foundation Engineering, Balkema, Rotterdam. Netherlands, 1991: 915-956.
    [2] BENZ T.Small-strain stiffness of soils and its numerical consequences[D]. Stuttgart: Institute of Geotechnical Engineering, University of Stuttgart, 2007.
    [3] 徐中华, 王卫东. 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学, 2010, 31(1): 258-264.
    (XU Zhong-hua, WANG Wei-dong.Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. Rock and Soil Mechanics, 2010, 31(1): 258-264. (in Chinese))
    [4] 王浩然. 上海软土地区深基坑变形与环境影响预测方法研究[D]. 上海: 同济大学, 2012.
    (WANG Hao-ran.Prediction of deformation and response of adjacent environment of deep excavation in Shanghai soft deposit[D]. Shanghai: Tongji University, 2012. (in Chinese))
    [5] HARDIN B O, DRNEVICH V P.Shear modulus and damping in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667-692.
    [6] HARDIN B O.Vibration modulus of normally consolidated clay[J]. J of the Soil Mechanics & Foundations Division, 1968, 94(2): 353-370.
    [7] KOKUSHO T.In-situ dynamic soil properties and their evaluations[C]// Proc 8th Asian Regional Conf on SMFE. Kyoto, 1987, 2: 215-240.
    [8] 顾晓强, 陆路通, 李雄威, 等. 土体小应变刚度特性的试验研究[J]. 同济大学学报 (自然科学版), 2018, 46(3): 312-317.
    (GU Xiao-qiang, LU Lu-tong, LI Xiong-wei, et al.Experimental study on the small strain stiffness properties of soil[J]. Journal of Tongji University (Natural Science), 2018, 46(3): 312-317. (in Chinese))
    [9] GU X, LU L, YANG J, WU X.Laboratory measurements of the dynamic properties of Shanghai clay[C]// Environmental Vibrations and Transportation Geodynamics, ISEV 2016. Springer, Singapore, 2016: 585-592.
    [10] 梁发云, 贾亚杰, 丁钰津, 等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017(2): 269-278.
    (LIANG Fa-yun, JIA Ya-jie, DING Yu-jin, et al.Experimental study on parameters of HSS model for soft soil in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2017(2): 269-278. (in Chinese))
  • 期刊类型引用(14)

    1. 姜淑印,李向阳,杨超,尹磊建,王佳奇,朱利勇. 考虑析水效应的PPGF浆液扩散规律与抗分散特征. 金属矿山. 2025(04): 43-53 . 百度学术
    2. 蔡跃辉. 动水注浆堵漏技术研究现状与发展情况. 科技创新与应用. 2025(13): 177-180 . 百度学术
    3. 李海燕,夏茂哲,张锟,张波,孙怀凤,赵国东,韩俊飞,刘功杰,贺恩磊. 岩溶凹陷式露天矿山大流量涌水治理技术. 煤炭科学技术. 2024(01): 267-279 . 百度学术
    4. 林久卿,牛昊,刘致延,李晓亮,王彦哲,李召峰,陈经棚. 水泥基矽土注浆材料抗海水侵蚀性能研究. 防灾减灾工程学报. 2024(03): 551-559 . 百度学术
    5. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    6. 陈亮,孙晨,王雷雨,邵晓妹,胡靖宇. 引水隧洞超前预处理灌浆材料研究与应用进展. 南水北调与水利科技(中英文). 2024(06): 1181-1188 . 百度学术
    7. 雷华阳,施福硕,刘旭,崔溦. 砂性地层中植物胶改性泥浆性质及渗透成膜试验研究. 岩土工程学报. 2023(02): 394-401 . 本站查看
    8. 张胜杰,王鸥,王天亮,王林,刘松松. 黄原胶及瓜尔胶改良尾矿砂强度特性及微观机制. 工程地质学报. 2023(02): 441-448 . 百度学术
    9. 周中,邓卓湘,鄢海涛,张俊杰. 岩溶区隧道新型绿色注浆材料试验研究. 铁道工程学报. 2023(07): 63-68 . 百度学术
    10. 吴龙骥,吴志军,翁磊. 聚丙烯酸酯改性水泥注浆材料力学性能与微观结构研究. 力学与实践. 2023(05): 999-1009 . 百度学术
    11. 夏冲,李传贵,冯啸,赵宏魁,张思峰,武剑峰. 水泥粉煤灰-改性水玻璃注浆材料试验研究与应用. 山东大学学报(工学版). 2022(01): 66-73+84 . 百度学术
    12. 付宏渊,查焕奕,潘浩强,曾铃,刘杰. 生物聚合物改良预崩解炭质泥岩水稳性及冲刷试验研究. 中南大学学报(自然科学版). 2022(07): 2633-2644 . 百度学术
    13. 张昊,胡相明,王伟,梁运涛,王兆喜,刘金举,白光星,赵艳云,吴明跃. 黄原胶和氧化镁改性黏土-水泥基新型喷涂堵漏风材料的制备及特征. 煤炭学报. 2021(06): 1768-1780 . 百度学术
    14. 康正斌,李小强,巩越. 强渗透涌水地层注浆新材料的配制与工程特性研究. 新型建筑材料. 2021(12): 19-23 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 30
出版历程
  • 收稿日期:  2019-04-29
  • 发布日期:  2019-07-19

目录

    /

    返回文章
    返回