Correlation between microscopic parameters and dynamic elastic modulus of loess
-
摘要: 取岷县地震台、庆阳黄土塬2~12 m深度土层的粉土、粉质黏土样品,通过室内动三轴和扫描电镜试验,测定了动弹性模量和微观结构特征,研究了粉土、粉质黏土的动本构关系,并采用关联度分析法研究了黄土竖向(沉积向)和横向(垂直于沉积向)的微观结构与最大动弹性模量之间的关系。研究结果表明:粉土和粉质黏土的动本构关系都符合Hardin-Dinevich双曲线模型。分形维数、概率熵和平均形状系数的变化对粉土、粉质黏土的最大动弹性模量的影响最敏感。其次是平均周长、长轴、短轴,而平均面积对其影响则相对较小。针对粉土横竖向关联度,横向微观参数对最大动弹性模量的影响更敏感;而粉质黏土,竖向微观参数对最大动弹性模量的影响更敏感。Abstract: The silty soil and silty clay samples of 2~12 m-deep soil layer of the Minxian Seismic Station and the Qingyang Loess Plateau are studied by the dynamic triaxial and scanning electron microscopy experiments, and the dynamic elastic modulus and microstructure characteristics are measured. The dynamic constitutive relation of silty clay is studied. The relationship between the vertical structure of the loess and the transverse (perpendicular to sedimentary direction) and the maximum dynamic elastic modulus are studied by the correlation analysis method. The results show that the dynamic constitutive relations of silt and silty clay are consistent with the Hardin-Dinevich hyperbolic model. The influences of fractal dimension, probability entropy and average shape coefficient on the maximum dynamic elastic modulus of silt and silty clay are the most sensitive. Secondly, for the average circumference, long axis and short axis, the average area has a relatively small impact on them. In view of the vertical and horizontal correlations of silt, the influences of transverse microscopic parameters on the maximum dynamic elastic modulus are more sensitive. For the silty clay, the influences of vertical microscopic parameters on the maximum dynamic elastic modulus are more sensitive.
-
Keywords:
- loess /
- dynamic elastic modulus /
- microstructure /
- principle of grey correlation /
- hyperbolic model /
- anisotropy
-
[1] 孙德安, 吴波. 非饱和粉土的动弹性模量和阻尼比研究[J]. 水利学报, 2012, 43(9): 1108-1113.
(SUN De-an, WU Bo.Study on dynamic modulus and damping ratio of unsaturated silt[J]. Journal of Hydraulic Engineering, 2012, 43(9): 1108-1113. (in Chinese))[2] 王谦, 李娜, 王平, 等. 甘南地区黄土的动模量与阻尼比特性研究[J]. 岩土工程学报, 2017, 39(增刊1): 192-197.
(WANG Qian, LI Na, WANG Ping, et al.Behaviors of dynamic modulus and damping ratio of loess in Gannan region of Gansu Province[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 192-197. (in Chinese))[3] 李又云, 谢永利, 刘保健. 路基压实黄土动力特性的试验研究[J]. 岩石力学与工程学报, 2009, 28(5): 1037-1046.
(Experimental research on dynamic characteristics of roadbed compaction loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 1037-1046. (in Chinese))[4] 安亮, 邓津, 王兰民. 黄土液化微细观特性试验研究[J]. 地震工程学报, 2018, 20(2): 1673-8047.
(AN Liang, DENG Jin, WANG Lan-min.Experimental Investigation of Micro-mesoscopic Features of Loess Liquefaction[J]. China Earthquake Engineering Journal, 2018, 20(2): 1673-8047. (in Chinese))[5] 王兰民, 邓津, 黄媛. 黄土震陷性的微观结构量化分析[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3025-3031.
(WANG Lan-min, DENG Jin, HUANG Yuan.Quantitative analysis of microstructure of loess seismic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3025-3031. (in Chinese))[6] 李识博, 王常明, 马建全, 等. 陇西黄土三轴剪切过程微观变化研究[J]. 岩土力学, 2013, 34(11): 3299-3305.
(LI Shi-bo, WANG Chang-ming, MA Jian-quan, et al.Microscopic changes of Longxi loess during triaxial shear process[J]. Rock and Soil Mechanics, 2013, 34(11): 3299-3305. (in Chinese))[7] 邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社, 2002.
(DENG Ju-long.Gray theory basis[M]. Wuhan: Huazhong University of Science and Technology Press, 2002. (in Chinese))[8] 陈国兴. 岩土地震工程学[M]. 北京: 科学出版社, 2007.
(CHEN Guo-xing.Geotechnical earthquake engineering[M]. Beijing: Science Press, 2007. (in Chinese))[9] LIU C, SHI B, ZHOU J, et al.Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106. -
期刊类型引用(42)
1. 朱赛楠,殷跃平,铁永波,撒兰鹏,高延超,贺宇,赵慧. 乌蒙山区巨型古滑坡变形特征与复活机理研究——以大关古滑坡为例. 岩土工程学报. 2025(02): 305-314 . 本站查看
2. 胡贵良,刘文,鄢勇,范雄安,张毅,杜光远,熊皓,王猛,余天彬. 金沙江上游色拉古滑坡复活特征与堵江溃决模拟分析. 地质学报. 2025(02): 602-615 . 百度学术
3. 杨豹,赵瑞志,王海波,李晓光,吕钊,赵阳,王梦云. 遥感技术对地质灾害早期识别和动态监测——以昌波乡至羊拉乡段为例. 科学技术与工程. 2024(05): 1823-1836 . 百度学术
4. 殷跃平,高少华. 高位远程地质灾害研究:回顾与展望. 中国地质灾害与防治学报. 2024(01): 1-18 . 百度学术
5. Yiqiu Yan,Changbao Guo,Yanan Zhang,Zhendong Qiu,Caihong Li,Xue Li. Development and Deformation Characteristics of Large Ancient Landslides in the Intensely Hazardous Xiongba-Sela Section of the Jinsha River, Eastern Tibetan Plateau, China. Journal of Earth Science. 2024(03): 980-997 . 必应学术
6. 李林,李涛,何治林,李树建,董健,王彪. 基于试验模拟的滑坡泥石流灾害链风险监测预警. 水土保持通报. 2024(02): 167-175 . 百度学术
7. 蒋涛,崔圣华,许向宁,蒙明辉. 四川高位滑坡发育特征及典型地质力学模式. 地质灾害与环境保护. 2024(02): 1-11 . 百度学术
8. 李金秋,张永双,任三绍,冉丽娜. 金沙江上游扎马古滑坡复活特征及堵河危险性分析. 水利学报. 2024(04): 481-492 . 百度学术
9. 武德宏,郝利娜,严丽华,唐烽顺,郑光. 金沙江滑坡群InSAR探测与形变因素分析. 自然资源遥感. 2024(03): 259-266 . 百度学术
10. 冉涛,徐如阁,李奇. 川藏交通廊道怒江段斜坡地质灾害发育特征及主控因素分析. 自然灾害学报. 2024(04): 176-187 . 百度学术
11. 徐正宣,林之恒,刘云鹏,聂晓芳,任利,张志龙. 复杂孕灾环境下隧道进口斜坡稳定性分析与评价. 西南交通大学学报. 2024(05): 1068-1077+1085 . 百度学术
12. 蒋佳岐,吴中海,黄小龙,黄飞鹏,王世锋. 金沙江干流巨型滑坡发育特征及其形成机理. 地震科学进展. 2024(10): 680-695 . 百度学术
13. 郑顺祥,王军,鄢勇,刘文,赵恒,杨钧翔,范雄安,张毅,王猛,余天彬. 金沙江上游沙东滑坡发育特征与堵江溃决预测分析. 水文地质工程地质. 2024(06): 160-170 . 百度学术
14. 郭海湘,区歌阳,杨钰莹. 1987—2022年中国自然灾害链研究进展与趋势——基于CiteSpace的计量分析. 安全与环境工程. 2024(06): 118-133 . 百度学术
15. 谭银龙,许万忠,曹家菊,罗丹,王本栋,谯立家,周谊. 基于Midas-GTS的三峡库区金鸡岭滑坡成因机制与稳定性分析. 水文地质工程地质. 2023(01): 113-121 . 百度学术
16. 牛敏杰,师芸,吕杰,赵侃,石龙龙. 基于SBAS-InSAR技术的广安村滑坡形变监测分析. 地理空间信息. 2023(01): 79-84 . 百度学术
17. 王庆芳,郑志军,董继红,余天彬,刘文,黄细超. 基于多源遥感技术的红层滑坡识别与监测研究. 人民长江. 2023(01): 111-118 . 百度学术
18. 高秉海,何毅,张立峰,姚圣,杨旺,陈毅,何旭,赵占骜,陈鹤升. 顾及In SAR形变的CNN滑坡易发性动态评估——以刘家峡水库区域为例. 岩石力学与工程学报. 2023(02): 450-465 . 百度学术
19. 董建军,梅媛,闫斌,刘士乙. 高海拔排土场边坡安全稳定性的PS-InSAR监测. 防灾减灾工程学报. 2023(01): 149-157 . 百度学术
20. 贾丽娜,李瑞冬,魏新平. 基于InSAR技术的黄土滑坡及周边斜坡变形识别. 地下水. 2023(02): 121-124 . 百度学术
21. 王之栋,唐伟,马志刚,李雨宸,杨本勇,李维庆,李永鑫. 九寨沟地区高位滑坡隐患InSAR-LiDAR早期识别. 测绘通报. 2023(05): 9-15 . 百度学术
22. 李沙,张立舟,周成涛,刘洋,陈锐. 基于SBAS-InSAR的大型滑坡变形分区及时序监测研究. 人民长江. 2023(06): 103-111 . 百度学术
23. 赵子昕,汪发武,朱国龙,彭星亮. 混杂岩形成机制及非均质力学特性研究进展. 工程地质学报. 2023(03): 796-814 . 百度学术
24. 张彦锋,高杨,李滨,朱赛楠. 青藏高原混杂岩带及其地质灾害发育特征分析. 工程地质学报. 2023(03): 981-998 . 百度学术
25. 刘印明. 区域降雨型浅层滑坡失稳机理研究. 科技创新与生产力. 2023(07): 30-33 . 百度学术
26. 李晓斌,白海军. 高位远程古滑坡既有变形特征和后续变形发展规律研究. 大地测量与地球动力学. 2023(11): 1129-1135 . 百度学术
27. 陈兴长,郭晓军,陈慧. 金沙江上游德格-白玉段流域地貌特征及影响因素分析. 第四纪研究. 2023(05): 1269-1281 . 百度学术
28. 吴明堂,房云峰,沈月,戴可人,姚义振,陈建强,冯文凯. 基于短基线DInSAR的白鹤滩库区蓄水期滑坡隐患广域快速动态识别. 遥感技术与应用. 2023(05): 1054-1061 . 百度学术
29. 包馨,张瑞,刘安梦云,王婷,向卫,刘国祥. 联合升降轨时序InSAR的金沙江滑坡群隐患识别. 北京理工大学学报. 2023(11): 1135-1145 . 百度学术
30. 刘媛媛,陈人杰,陈能辉. 西藏色拉滑坡时序InSAR二维形变反演与预测. 北京理工大学学报. 2023(11): 1115-1124 . 百度学术
31. 陈新咏. 某高位滑坡强变形监测及成因机制分析. 福建建材. 2022(01): 64-67+73 . 百度学术
32. 易思材,张明文,李帅. 云南某梯田滑坡灾害治理施工技术. 建筑机械化. 2022(02): 64-66 . 百度学术
33. 丁永辉,张勤,杨成生,王猛,丁辉. 基于高分遥感的金沙江流域滑坡识别——以巴塘县王大龙村为例. 测绘通报. 2022(04): 51-55 . 百度学术
34. 王海鹏,高瑞丹,宁树理,王航,寻怀军. 重庆市丰太六组前缘滑坡特征分析及治理方案. 工程建设. 2022(06): 36-41 . 百度学术
35. 戴可人,沈月,吴明堂,冯文凯,董秀军,卓冠晨,易小宇. 联合InSAR与无人机航测的白鹤滩库区蓄水前地灾隐患广域识别. 测绘学报. 2022(10): 2069-2082 . 百度学术
36. 铁永波,葛华,高延超,白永健,徐伟,龚凌枫,王家柱,田凯,熊小辉,范文录,张宪政. 二十世纪以来西南地区地质灾害研究历程与展望. 沉积与特提斯地质. 2022(04): 653-665 . 百度学术
37. 钟彬,柳志云,李向新,吕加颖. 滑坡形变的升降轨时序干涉合成孔径雷达监测与分析. 激光与光电子学进展. 2022(24): 247-254 . 百度学术
38. 杨成生,董继红,朱赛楠,熊国华. 金沙江结合带巴塘段滑坡群InSAR探测识别与形变特征. 地球科学与环境学报. 2021(02): 398-408 . 百度学术
39. 朱赛楠,殷跃平,黄波林,张枝华,王平,王文沛,赵慧,张晨阳. 三峡库区大型单斜顺层新生滑坡变形特征与失稳机理研究. 工程地质学报. 2021(03): 657-667 . 百度学术
40. 吴瑞安,马海善,张俊才,杨志华,李雪,倪嘉伟,钟宁. 金沙江上游沃达滑坡发育特征与堵江危险性分析. 水文地质工程地质. 2021(05): 120-128 . 百度学术
41. 黄细超,余天彬,王猛,朱赛楠,宋班,刘文. 金沙江结合带高位远程滑坡灾害链式特征遥感动态分析——以白格滑坡为例. 中国地质灾害与防治学报. 2021(05): 40-51 . 百度学术
42. 熊国华,杨成生,朱赛楠,董继红,张勤. 基于MSBAS技术的金沙江上游色拉滑坡形变分析. 中国地质灾害与防治学报. 2021(05): 1-9 . 百度学术
其他类型引用(19)
计量
- 文章访问数: 300
- HTML全文浏览量: 10
- PDF下载量: 113
- 被引次数: 61