• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

钙质砂热传导性能试验

付慧丽, 莫红艳, 曾召田, 郑川, 徐云山

付慧丽, 莫红艳, 曾召田, 郑川, 徐云山. 钙质砂热传导性能试验[J]. 岩土工程学报, 2019, 41(S2): 61-64. DOI: 10.11779/CJGE2019S2016
引用本文: 付慧丽, 莫红艳, 曾召田, 郑川, 徐云山. 钙质砂热传导性能试验[J]. 岩土工程学报, 2019, 41(S2): 61-64. DOI: 10.11779/CJGE2019S2016
FU Hui-li, MO Hong-yan, ZENG Zhao-tian, ZHENG Chuan, XU Yun-shan. Experimental study on thermal conductivity of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 61-64. DOI: 10.11779/CJGE2019S2016
Citation: FU Hui-li, MO Hong-yan, ZENG Zhao-tian, ZHENG Chuan, XU Yun-shan. Experimental study on thermal conductivity of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 61-64. DOI: 10.11779/CJGE2019S2016

钙质砂热传导性能试验  English Version

基金项目: 国家自然科学基金项目(51568014); 广西自然科学基金项目(2018GXNSFAA138182); 广西建筑新能源与节能重点实验室资助课题(桂科能17-J-21-2)
详细信息
    作者简介:

    付慧丽(1993— ),女,硕士研究生,研究方向为环境岩土工程。E-mail: 312942004@qq.com。

    通讯作者:

    曾召田,E-mail:zengzhaotian@163.com

Experimental study on thermal conductivity of calcareous sand

  • 摘要: 基于热针法测得了不同条件下南海钙质砂的热传导性能,探讨了含水率、干密度、温度、颗粒粒径等因素对钙质砂热导率的影响。研究结果表明:钙质砂热导率随含水率、干密度的增大而增大,且含水率越大,干密度对热导率的影响越明显;相对于随干密度的变化,钙质砂热导率随含水率的变化尤为显著;钙质砂热导率随温度升高而增大,但是热导率在不同温度下随含水率的增长趋势不同;颗粒粒径对钙质砂热导率的影响甚微;在钙质砂中掺入一定量石英砂有助于改善其导热性能。
    Abstract: The thermal conductivity of calcareous sand in the South China Sea is measured under different conditions by the thermal probe method, and the effects of water content, dry density, temperature, particle size and other factors on the thermal conductivity of calcareous sand are discussed. The results show that the thermal conductivity of calcareous sand increases with the increase of the water content and dry density, and the higher the water content, the more significant the influences of dry density on thermal conductivity. The thermal conductivity of calcareous sand increases with the increase of the temperature, but the thermal conductivity of calcareous sand varies with the increasing trend of water content at different temperatures. The particle size has little effect on the thermal conductivity of calcareous sand. Adding a certain amount of quartz sand into the calcareous sand helps to improve its thermal conductivity.
  • [1] 刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与发展[J]. 岩土力学, 1995, 16(4): 74-83.
    (LIU Chong-quan, YANG Zhi-qiang, WANG Ren.Research status and development of mechanical properties of calcareous soil[J]. Rock and Soil Mechanics, 1995, 16(4): 74-83. (in Chinese))
    [2] SPLADING M D, RAVILIOUS C, GREEN E P.World atlas of coral reefs[M]. Berkeley: University of California Press, 2001.
    [3] 虞海珍, 汪稔. 钙质砂动强度试验研究[J]. 岩土力学, 1999, 20(4): 6-11.
    (YU Hai-zhen, WANG Ren.Experimental study on dynamic strength of calcareous sand[J]. Rock and Soil Mechanics, 1999, 20(4): 6-11. (in Chinese))
    [4] 张家铭, 张凌, 刘慧, 等. 钙质砂剪切特性试验研究[J]. 岩石力学与工程学报, 2008, 27: 3010-3015.
    (ZHANG Jia-ming, ZHANG Lin, LIU Hui, et al.Experimental study on shear properties of calcareous sand[J]. Journal of Rock Mechanics and Engineering, 2008, 27: 3010-3015. (in Chinese))
    [5] 王帅, 雷学文, 孟庆山, 等. 侧限条件下高压对钙质砂颗粒破碎影响研究[J]. 建筑科学, 2017, 33(5): 80-87.
    (WANG Shuai, LEI Xue-wen, MENG Qing-shan, et al.Effect of high pressure on calcareous sand particle breakage under lateral conditions[J]. Architectural science, 2017, 33(5): 80-87. (in Chinese))
    [6] KING S Y, HALFTER N A.Underground power cables[M]. London: Longman, 1982.
    [7] SLEGEL D L, DAVIS L R.Transient heat and mass transfer in soils in the vicinity of heated porous pipes[J]. J Heat Transfer 1977, 99(4): 541-546.
    [8] TANG A M, CUI Y J, LE T T.A study on the thermal conductivity of compacted bentonites[J]. Applied Clay Science, 2008, 41(3): 181-189.
    [9] 王铁行, 刘自成, 卢靖. 黄土导热系数和比热容的实验研究[J]. 岩土力学, 2007, 28(4): 655-658.
    (WANG Tie-xing, LIU Zi-cheng, LU Jing.Experimental study on coefficient of thermal conductivity and specific volume heat of loess[J]. Rock and Soil Mechanics, 2007, 28(4): 655-658. (in Chinese))
    [10] 曾召田, 范理云, 莫红艳, 等. 土壤热导率的影响因素实验研究[J]. 太阳能学报, 2018, 39(2): 377-383.
    (ZENG Zhao-tian, FAN Li-yun, MO Hong-yan, et al.Experimental study on factors affecting soil thermal conductivity[J]. ACTA Energiae Solaris Sinica, 2018, 39(2): 377-383. (in Chinese))
    [11] 庄迎春, 谢康和, 孙友宏. 砂土混合材料导热性能的试验研究[J]. 岩土力学, 2005, 26(2): 261-265.
    (ZHUANG Ying-chun, XIE Kang-he, SUN You-hong.Experimental study on thermal conductivity of sand and soil mixtures[J]. Rock and Soil Mechanics, 2005, 26(2): 261-265. (in Chinese))
    [12] 徐云山, 曾召田, 吕海波, 等. 高温下红黏土热导率的变化规律试验研究[J]. 工程地质学报, 2017, 25(6): 1465-1473.
    (XU Yun-shan, ZENG Zhao-tian, LÜ Hai-bo, et al.Experimental study on the variation of thermal conductivity of red clay at high temperature[J]. Journal of Engineering Geology, 2017, 25(6): 1465-1473. (in Chinese))
    [13] 周媛媛, 江海峰, 李辉, 等. 含水砂土导热系数实验研究[J]. 工程热物理学报, 2015, 36(2): 265-268.
    (ZHOU Yuan-yuan, JIANG Hai-feng, LI Hui, et al.Experimental study of the thermal conductivity of sand with different moisture content[J]. Journal of engineering Thermophysics, 2015, 36(2): 265-268. (in Chinese))
    [14] 邵明安, 王全九, 黄明斌. 土壤物理学[M]. 北京: 高等教育出版社, 2006.
    (SHAO Ming-an, WANG Quan-jiu, HUANG Ming-bin.Soil physics[M]. Beijing: Higher Education Press, 2006. (in Chinese))
  • 期刊类型引用(15)

    1. 葛苗苗,朱才辉,盛岱超,PINEDA Jubert,李宁. 非饱和压实黄土渗气特性及细观渗气机制研究. 岩石力学与工程学报. 2025(01): 221-235 . 百度学术
    2. 胡静,金林廉,吕志豪,张家康,边学成. 基于考虑变形效应的土-水特征曲线求解非饱和地基动力响应. 岩土工程学报. 2025(02): 397-406 . 本站查看
    3. 周葆春,江星澐,马全国,单丽霞,王江伟,李颖,易先达,孔令伟. 低应力和湿化路径下膨胀土的力学行为与本构模拟. 岩土工程学报. 2025(04): 695-704 . 本站查看
    4. 李佳文,陈高明,田世龙,韩博文,冯怀平,杨志浩. 土体含水率对振动压实的影响及电阻率演化特征研究. 振动与冲击. 2025(07): 16-25 . 百度学术
    5. 吴炎,胡坤,姜马欢,李荟楠,彭哲. 两种气体作用下非饱和江边吹填砂三轴试验研究. 人民长江. 2024(02): 211-215+230 . 百度学术
    6. 赵中航,林昱利,郭浩天,刘全想,任淇淇. 温度及饱和度对粉质黏土变形特性的影响. 低温建筑技术. 2024(02): 119-123 . 百度学术
    7. 赵习武. 土工格室在库岸非饱和土边坡稳定性治理中的应用. 水利技术监督. 2024(06): 276-278+282 . 百度学术
    8. 张莹,刘忠,谢文博. 非饱和土地基的承载比试验分析. 工程与建设. 2024(02): 417-419 . 百度学术
    9. 尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 . 百度学术
    10. 朱振慧,赵连军,张防修,黄李冰. 基于黏粒含量的黄河下游堤防土水特征曲线预测研究. 人民黄河. 2024(10): 55-61 . 百度学术
    11. 陈可,王琛,梁发云,汪中卫. 考虑水力滞后与变形耦合的非饱和土持水曲线模型. 岩土力学. 2024(12): 3694-3704+3716 . 百度学术
    12. 李纯,王煜斌,王刚. 层状土体变特性及变形计算方法研究进展. 水利与建筑工程学报. 2023(04): 1-9 . 百度学术
    13. 权国绍,刘鹏. 强降雨条件下高填路段路基滑坡稳定性数值优化分析. 粘接. 2023(11): 165-168 . 百度学术
    14. 周子宜. 鸡姆塘水库大坝除险加固渗流与坝坡稳定分析. 水利科学与寒区工程. 2023(11): 33-36 . 百度学术
    15. 上官云龙,李东鑫,王罡. 冻融循环对膨胀土力学特性的影响及本构描述. 吉林建筑大学学报. 2023(06): 33-38 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 26
出版历程
  • 收稿日期:  2019-04-28
  • 发布日期:  2019-07-19

目录

    /

    返回文章
    返回