• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

散粒土自然堆积的宏细观特征与形成机制

戴北冰, 杨峻, 刘锋涛, 林凯荣

戴北冰, 杨峻, 刘锋涛, 林凯荣. 散粒土自然堆积的宏细观特征与形成机制[J]. 岩土工程学报, 2019, 41(S2): 57-60. DOI: 10.11779/CJGE2019S2015
引用本文: 戴北冰, 杨峻, 刘锋涛, 林凯荣. 散粒土自然堆积的宏细观特征与形成机制[J]. 岩土工程学报, 2019, 41(S2): 57-60. DOI: 10.11779/CJGE2019S2015
DAI Bei-bing, YANG Jun, LIU Feng-tao, LIN Kai-rong. Macro- and micro-properties and formation mechanisms of granular piles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 57-60. DOI: 10.11779/CJGE2019S2015
Citation: DAI Bei-bing, YANG Jun, LIU Feng-tao, LIN Kai-rong. Macro- and micro-properties and formation mechanisms of granular piles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 57-60. DOI: 10.11779/CJGE2019S2015

散粒土自然堆积的宏细观特征与形成机制  English Version

基金项目: 国家自然科学基金项目(51209237,51779279); 广州市科技计划项目(201707010082)
详细信息
    作者简介:

    戴北冰(1981— ) ,男,湖北公安人,博士,副教授,主要从事宏细观岩土力学方面的教学和科研工作。E-mail: beibing_dai@yahoo.com。

    通讯作者:

    刘锋涛,E-mail:liuft@mail.sysu.edu.cn

Macro- and micro-properties and formation mechanisms of granular piles

  • 摘要: 利用离散元数值方法模拟由不同形状颗粒形成散粒堆积体的过程,并通过分析堆积体的宏细观力学特征来揭示其形成机制。研究发现,颗粒形状愈规则,自然休止角愈小。细观上,颗粒接触法向量、法向接触力和切向接触力的各向异性分布强度都随颗粒形状变得规则而降低;接触法向量各向异性主方向与竖直方向的角度差Δ?n同自然休止角α之和近乎为一个常数,法向接触力和切向接触力的各向异性主方向与竖直方向的角度差Δ?f和Δ?t可近似表达为与自然休止角α正相关的线性函数。最后,建立了堆积体内部拱效应的优势发挥方位同颗粒接触法向量、法向接触力和切向接触力各向异性主方向的关系。
    Abstract: A DEM study is carried out to simulate the construction of granular piles by considering various particle shapes. The underlying mechanisms are analyzed through the examination of the macro and micro-characteristics of granular piles. It is found that angle of repose decreases as particle shape evolves towards a regular pattern. Microscopically, the anisotropy magnitudes of contact orientation vectors, contact normal and tangential force vectors decrease as particle shape evolves from an irregular one to a regular one. The summation of the angle difference Δ?n between the principal anisotropy direction of contact orientation vectors and the vertical direction, with the angle of repose α, is almost a constant, and the angel differences Δ?f and Δ?t for the principal anisotropy directions of contact normal and tangential forces are revealed to be a linear function of angle of repose α. In addition, a relationship is also established between the direction where the most intense arching effect occurs and the principal anisotropy directions of contact orientation vectors, contact normal and tangential force vectors.
  • [1] MUEGGENBURG N W, JAEGER H M, NAGEL S R.Stress transmission through three-dimensional ordered granular arrays[J]. Phys Rev E, 2002, 66: 031304.
    [2] ATMAN A P F, BRUNET P, GENG J, et al. From the stress response function (back) to the sand pile “dip”[J]. Eur Phys J E, 2005, 13: 93-100.
    [3] GENG J, LONGHI E, BEHRINGER R P, et al.Memory in two-dimensional heap experiments[J]. Phys. Rev. E, 2001, 64: 060301.
    [4] ZUIGUEL L, MULLIN T, ROTTER J M.The effect of particle shape on the stress dip under a sandpile[J]. Phys. Rev. Lett., 2007, 98: 028001.
    [5] LUDING S.Stress distribution in static two-dimensional granular model media in the absence of friction[J]. Phys Rev E, 1997, 55: 4720-4729.
    [6] GOLDENBERG C, GOLDHIRSCH I.Friction enhances elasticity in granular solids[J]. Nature, 2005, 435: 188-191.
    [7] LIFFMAN K, NGUYEN M, METCALFE G, et al.Forces in piles of granular materials: an analytic and 3D DEM study[J]. Granul Matter, 2001, 3: 165-176.
    [8] LI Y, XU Y, THORNTON C.A comparison of discrete element method simulations and experiments for ‘sand pile’ composed of spherical particles[J]. Powder Technol, 2005, 160: 219-228.
    [9] DAI B B, YANG J, ZHOU C Y.Micromechanical origin of angle of repose in granular materials[J]. Granul Matter, 2017, 19: 24.
    [10] MATUTTIS H G, LUDING S, HERRMANN H J.Discrete element simulations of dense packing and heaps made of spherical and non-spherical particles[J]. Powder Technol., 2000, 109: 278-292.
    [11] ZHOU Z Y, ZOU R P, PINSON D, et al.Angle of repose and stress distribution of sandpiles formed with ellipsoidal particles[J]. Granul Matter, 2014, 16: 695-709.
    [12] 戴北冰, 杨峻, 周翠英. 松砂不稳定行为的数值模拟研究[J]. 岩土工程学报, 2013, 35(9): 1737-1745.
    (DAI Bei-bing, YANG Jun,ZHOU Cui-ying.Numerical study on instability behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1737-1745. (in Chinese))
    [13] DAI B B.Probing the boundary effect in granular piles[J]. Granul Matter, 2018, 20: 5.
  • 期刊类型引用(8)

    1. 赵云,杨忠方,张朋,凌道盛. 非饱和砂土中深埋活动门试验松动土压力计算. 岩土工程学报. 2025(04): 769-778 . 本站查看
    2. 任一青,陈保国,任国卿,杨振忠,徐方. 涵顶-涵侧减载条件下高填方箱涵施工期受力特性. 岩土力学. 2025(04): 1153-1162 . 百度学术
    3. 孙珊珊,贾世文,梁忠旭,刘墨林,张常光. 基于填土荷载传递二项式分布模式的沟埋式涵洞竖向土压力. 岩土力学. 2025(05): 1501-1510 . 百度学术
    4. 张常光,吴凯,孟祥忠,王晓轮. 稳态渗流下非饱和土涵洞竖向土压力的迭代解与简化. 哈尔滨工业大学学报. 2024(03): 68-77 . 百度学术
    5. 董顺,张翰,高潮,淦方茂,谭尧升. 考虑黏聚力及不完全拱效应的太沙基松动土压力. 地下空间与工程学报. 2024(03): 748-756 . 百度学术
    6. 李泉仪,高华喜. 计及地质强度指数的坝坡基坑岩土承压敏感性试验研究. 水利规划与设计. 2024(09): 143-147 . 百度学术
    7. 程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 . 百度学术
    8. 陈华根. 穿坝涵闸受力影响因素有限元分析研究. 水利科学与寒区工程. 2023(07): 30-32 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  289
  • HTML全文浏览量:  6
  • PDF下载量:  174
  • 被引次数: 12
出版历程
  • 收稿日期:  2019-04-28
  • 发布日期:  2019-07-19

目录

    /

    返回文章
    返回