• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

改进DE-TMCMC法及其在高级模型参数识别上的应用

程马遥, 金银富, 尹振宇, 吴则祥

程马遥, 金银富, 尹振宇, 吴则祥. 改进DE-TMCMC法及其在高级模型参数识别上的应用[J]. 岩土工程学报, 2019, 41(12): 2281-2289. DOI: 10.11779/CJGE201912013
引用本文: 程马遥, 金银富, 尹振宇, 吴则祥. 改进DE-TMCMC法及其在高级模型参数识别上的应用[J]. 岩土工程学报, 2019, 41(12): 2281-2289. DOI: 10.11779/CJGE201912013
CHENG Ma-yao, JIN Yin-fu, YIN Zhen-yu, WU Ze-xiang. Enhanced DE-TMCMC and its application in identifying parameters of advanced soil model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2281-2289. DOI: 10.11779/CJGE201912013
Citation: CHENG Ma-yao, JIN Yin-fu, YIN Zhen-yu, WU Ze-xiang. Enhanced DE-TMCMC and its application in identifying parameters of advanced soil model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2281-2289. DOI: 10.11779/CJGE201912013

改进DE-TMCMC法及其在高级模型参数识别上的应用  English Version

基金项目: 国家自然科学基金面上基金项目(51579179)
详细信息
    作者简介:

    程马遥(1988— ),女,讲师,博士,主要从事土体细观力学与本构等方面的教学和科研。E-mail: chengmayao@163.com。

    通讯作者:

    尹振宇,E-mail:zhenyu.yin@polyu.edu.hk

  • 中图分类号: TU43

Enhanced DE-TMCMC and its application in identifying parameters of advanced soil model

  • 摘要: 目前基于贝叶斯结合马尔可夫链蒙特卡罗(MCMC)的参数识别方法仅在某些传统的简单本构模型的参数识别上得到了验证。鉴于此,提出了一种效率更高的基于差分进化算法的过渡马尔可夫链蒙特卡罗方法(DE-TMCMC),并基于此提出了一种高效的贝叶斯参数识别方法,应用于高级土体本构模型的参数识别。为了验证其稳健性和有效性,选取丰浦砂的常规室内试验结果作为目标试验来识别考虑临界状态的砂土本构模型的参数。通过对比原始TMCMC方法在参数识别上的表现,突显了DE-TMCMC在识别砂土高级本构模型参数方面的能力。
    Abstract: The parameter identification using Bayesian approach with Markov chain Monte Carlo (MCMC) has been verified only for certain conventional simple constitutive models up to now. An enhanced version of the differential evolution transitional Markov chain Monte Carlo (DE-TMCMC) method and a competitive Bayesian parameter identification approach for use in advanced soil models are presented. The DE-TMCMC, enhanced through implementing a differential evolution into TMCMC to replace the process of proposing a new sample, is proposed. To verify its robustness and effectiveness, the triaxial tests on Toyoura sand are selected as objectives to identify the parameters of the critical state-based sand model SIMSAND. The original TMCMC is also used as a reference to compare the results of DE-TMCMC, which indicates that the DE-TMCMC is highly robust and efficient in identifying the parameters of advanced soil models. All the results demonstrate the excellent ability of the enhanced Bayesian parameter identification approach in identifying the parameters of advanced soil models from both laboratory and in situ tests.
  • [1] JIN Yin-fu, YIN Zhen-yu, WU Ze-xiang, et al.Numerical modeling of pile penetration in silica sands considering the effect of grain breakage[J]. Finite Elements in Analysis and Design, 2018, 144: 15-29.
    [2] JIN Yin-fu, YIN Zhen-yu, WU Ze-xiang, et al.Identifying parameters of easily crushable sand and application to offshore pile driving[J]. Ocean Engineering, 2018, 154: 416-429.
    [3] YIN Zhen-yu, JIN Yin-fu, SHEN Shui-long, et al.Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(1): 70-94.
    [4] 田密, 李典庆, 曹子君, 等. 基于贝叶斯理论的土性参数空间变异性量化方法[J]. 岩土力学, 2017, 38(11): 3355-3362.
    (TIAN Mi, LI Dian-qing, CAO Zi-jun, et al.Quantification of spatial variability of soil parameters using Bayesian approaches[J]. Rock and Soil Mechanics, 2017, 38(11): 3355-3362. (in Chinese))
    [5] 付代光, 刘江平, 周黎明, 等. 基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究[J]. 岩土工程学报, 2015, 37(2): 321-329.
    (FU Dai-guang, LIU Jiang-ping, ZHOU Li-ming, et al.Inversion of multimode Rayleigh-wave dipersion curves of soft interlayer based on Bayesian theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 321-329. (in Chinese))
    [6] 郑俊杰, 徐志军, 刘勇, 等. 基桩抗力系数的贝叶斯优化估计[J]. 岩土工程学报, 2012, 34(9): 1716-1721.
    (ZHENG Jun-jie, XU Zhi-jun, LIU Yong, et al.Bayesian optimization for resistance factor of piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1716-1721. (in Chinese))
    [7] 陈斌, 刘宁, 卓家寿. 岩土工程反分析的扩展贝叶斯法[J]. 岩石力学与工程学报, 2004, 23(4): 555-560.
    (CHEN Bin, LIU Ning, ZHUO Jia-shou.Extended bayesian method of inverse analysis in geoengineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 555-560. (in Chinese))
    [8] JIN Yin-fu, WU Ze-xiang, YIN Zhen-yu, et al.Estimation of critical state-related formula in advanced constitutive modeling of granular material[J]. Acta Geotechnica, 2017, 12(6): 1329-1351.
    [9] JIN Yin-fu, YIN Zhen-yu, SHEN Shui-long, et al.Selection of sand models and identification of parameters using an enhanced genetic algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(8): 1219-1240.
    [10] YUEN Ka-veng.Bayesian methods for structural dynamics and civil engineering[M]. Clementi Loop: John Wiley & Sons, 2010.
    [11] YUSUKE Honjo, LIU Wen-Tsung, SOUMITRA Guha.Inverse analysis of an embankment on soft clay by extended Bayesian method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(10): 709-734.
    [12] THOMAS Most.Identification of the parameters of complex constitutive models: least squares minimization vs Bayesian updating[M]// Reliability and Optimization of Structural Systems, CRC Press, 2010: 119.
    [13] MIRO S, KÖNIG M, HARTMANN D, et al. A probabilistic analysis of subsoil parameters uncertainty impacts on tunnel-induced ground movements with a back-analysis study[J]. Computers and Geotechnics, 2015, 68: 38-53.
    [14] KEITH Hastings W.Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1): 97-109.
    [15] LEE Se-Hyeok, SONG Jun-ho.System identification of spatial distribution of structural parameters using modified transitional Markov chain monte carlo method[J]. Journal of Engineering Mechanics, 2017, 143(9): 04017099.
    [16] PANAGIOTIS Angelikopoulos, COSTAS Papadimitriou, PETROS Koumoutsakos.X-TMCMC: adaptive kriging for Bayesian inverse modeling[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 409-428.
    [17] ORTIZ Gilberto A, ALVAREZ Diego A, BEDOYA-Ruíz Daniel.Identification of Bouc-Wen type models using the transitional Markov chain Monte Carlo method[J]. Computers & Structures, 2015, 146: 252-269.
    [18] WOLFGANG Betz, IASON Papaioannou, DANIEL Straub.Transitional Markov chain Monte Carlo: observations and improvements[J]. Journal of Engineering Mechanics, 2016, 142(5): 04016016.
    [19] CHING Jian-ye, CHEN Yi-chu.Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. Journal of Engineering Mechanics, 2007, 133(7): 816-832.
    [20] VRUGT Jasper A.Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation[J]. Environmental Modelling & Software, 2016, 75: 273-316.
    [21] VERDUGO Ramon, ISHIHARA Kenji.The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
    [22] TAIEBAT Mahdi, DAFALIAS Yannis F.SANISAND: simple anisotropic sand plasticity model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(8): 915-948.
  • 期刊类型引用(5)

    1. 郭旭辉,朱鸿鹄,吴冰,高宇新,胡乐乐,曹鼎峰. 基于人工神经网络的黄土含水率光纤被动感测技术研究. 岩土力学. 2025(02): 653-664 . 百度学术
    2. 高磊,袁泽,王勤,高明军. 基于OFDR技术的土体含水率模型研究. 工程地质学报. 2025(01): 96-105 . 百度学术
    3. 严辉,林沛元. 深圳市岩溶地层标准贯入击数神经网络模型. 地质科技通报. 2025(02): 305-321 . 百度学术
    4. 李杰,朱鸿鹄,吴冰,刘喜凤,王家琛,曹鼎峰,施斌. 下蜀土降雨入渗光纤感测及渗透系数估算研究. 工程地质学报. 2024(02): 601-611 . 百度学术
    5. 朱鸿鹄. 工程地质界面:从多元表征到演化机理. 地质科技通报. 2023(01): 1-19 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-07-25
  • 发布日期:  2019-12-24

目录

    /

    返回文章
    返回