• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于非连续面拓扑优化技术的块体结构体系稳定性分析方法

黄齐武

黄齐武. 基于非连续面拓扑优化技术的块体结构体系稳定性分析方法[J]. 岩土工程学报, 2019, 41(12): 2233-2242. DOI: 10.11779/CJGE201912008
引用本文: 黄齐武. 基于非连续面拓扑优化技术的块体结构体系稳定性分析方法[J]. 岩土工程学报, 2019, 41(12): 2233-2242. DOI: 10.11779/CJGE201912008
HUANG Qi-wu. Stability analysis of blocky system structures based on discontinuity layout optimization technique[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2233-2242. DOI: 10.11779/CJGE201912008
Citation: HUANG Qi-wu. Stability analysis of blocky system structures based on discontinuity layout optimization technique[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2233-2242. DOI: 10.11779/CJGE201912008

基于非连续面拓扑优化技术的块体结构体系稳定性分析方法  English Version

基金项目: 国家自然科学基金青年基金项目(41202219); 北京市重点实验室资助项目(SCJJ2018005)
详细信息
    作者简介:

    黄齐武(1979— ),男,高级工程师,博士,主要从事城市轨道交通岩土工程技术和数值方法研究。E-mail:richardhuangqw@163.com。

  • 中图分类号: TU43

Stability analysis of blocky system structures based on discontinuity layout optimization technique

  • 摘要: 计算块体结构体系的极限荷载和确定其相应的临界破坏模式是实际工程中的一项重要任务。非连续面拓扑优化技术(DLO)基于严谨塑性理论的速度非连续面(能量耗散)和优化理论从大量的潜在非连续面集中确定非连续面的临界布局,从而构成临界破坏模式。DLO程序利用栅格点阵进行离散,节点间连线为潜在滑移面或速度跳跃的非连续面。相容性通过直接检验节点运动变量的线性方程来实现。最终的目标函数为速度变量的线性函数,依据所有非连续面的平动和转动总耗散能量建立。为提高计算效率,在传统基结构的基础上,提出考虑杆件激活和冗余删除的自适应节点连接算法。虽然优化解受离散节点初始位置的影响,但通过细分栅格节点,节点的确切位置将对优化解的影响相对较小。与相关文献的基准问题和算例进行比对,验证DLO方法的应用潜力。研究表明,改进的自适应节点连接算法,可应用处理常规的块体结构稳定性问题,不仅极大地提高了计算效率,而且避免数值计算的持续振荡。
    Abstract: Computing the collapse loads and identifying the associated mechanism of block assemblage structures is an important task in practical engineering. The discontinuity layout optimization (DLO) is proposed entirely based on velocity discontinuities with rigorous plasticity theory, which the optimization uses to determine the critical arrangement of the discontinuities from a large set of potential discontinuities. In DLO procedure, the initial problem is discretized using the nodes distributed across the body under consideration. The potential discontinuity lines or slip lines along which jumps in rate of displacement are created by linking each node to every other node. Compatibility can be straightforwardly checked at each node by a simple linear equation involving movement variables. Finally an objective function may be defined based on the total energy dissipated due to translation along all discontinuities, a linear function of the velocity variables. In order to improve the performance of the classical ground structure approach, the adaptive member refinement (adaptive nodal connection procedure) considers both deletion and addition of members in the iterative process. Although the solution will be influenced somewhat by the starting position of the nodes, when fine nodal refinement is used, the exact positions of individual nodes will have relatively little influence on the solution generated. The procedure is applied to the problems from the literature and also to new benchmark problems including masonry walls and jointed rock slopes so as to illustrate potentialities of the method. The results show that the proposed adaptive member refinement algorithm can deal with the stability analysis of practical blocky structures and avoid oscillating between two different solutions at successive iterations with the results that the optimization efficiency is improved significantly.
  • [1] LIVESLEY R K.Limit analysis of structures formed from rigid blocks[J]. International Journal of Numerical Methods in Engineering, 1978, 12: 1853-1871.
    [2] LIVESLEY R K.A computational model for the limit analysis of three-dimensional masonry structures[J]. Meccanica, 1992, 27(3):161-172.
    [3] BOOTHBY T E, BROWN C B.Stability of masonry piers and arches[J]. Journal of Engineering Mechanics, 1992, 118(2): 367-383.
    [4] BOOTHBY T E.Stability of masonry piers and arches including sliding[J]. Journal of Engineering Mechanics, 1994, 120(2): 304-319.
    [5] GILBERT M, MELBOURNE C.Rigid-block analysis of masonry structures[J]. Structural Engineer, 1994, 72(21): 356-361.
    [6] MELBOURNE C, GILBERT M.The behaviour of multi-ring brickwork arch bridges[J]. Structural Engineer, 1995, 73(3): 39-47.
    [7] BAGGIO C, TROVALUSCI P.Limit analysis for no-tension and frictional three-dimensional discrete systems[J]. Mechanics of Structures and Machines, 1998, 26(3): 287-304.
    [8] BAGGIO C, TROVALUSCI P.Collapse behaviour of three-dimensional brick-block systems using non-linear programming[J]. Structural Engineering and Mechanics, 2000, 10(2): 181-195.
    [9] FERRIS M, TIN-LOI F.Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints[J]. International Journal of Mechanics Sciences, 2001, 43(1): 209-224.
    [10] ORDUÑA A, LOURENÇO P B. Three-dimensional limit analysis of rigid blocks assemblages: Part I torsion failure on frictional joints and limit analysis formulation[J]. International Journal of Solids and Structures, 2005, 42(18/19): 5140-5160.
    [11] ORDUÑA A, LOURENÇO P B. Three-dimensional limit analysis of rigid blocks assemblages: Part II load-path following solution procedure and validation[J]. International Journal of Solids and Structures, 2005, 42(18/19): 5161-5180.
    [12] LYSMER J.Limit analysis of plane problems in soil mechanics[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(4): 1311-1334.
    [13] SLOAN S W, KLEEMAN P W.Upper bound limit analysis using discontinuous velocity fields[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 127(1/2/3/4): 293-314.
    [14] MAKRODIMOPOULOS A, MARTIN C M.Lower bound limit analysis of cohesive-frictional materials using second- order cone programming[J]. International Journal for Numerical Methods in Engineering, 2006, 66(4): 604-634.
    [15] CHRISTIANSEN E, PEDERSEN O S.Automatic mesh refinement in limit analysis[J]. International Journal for Numerical Methods in Engineering, 2001, 50: 1331-1346.
    [16] BORGES L A, ZOUAIN N, COSTA C, et al.An adaptive approach to limit analysis[J]. International Journal of Solids and Structures, 2001, 38(10/11/12/13): 1707-1720.
    [17] FRANCO J R Q, PONTER A R S, BARROS F B. Adaptive FE method for the shakedown and limit analysis of pressure vessels[J]. European Journal Mechanics A-Solids, 2003, 22(4): 525-533.
    [18] LYAMIN A V, SLOAN S W.Mesh generation for lower bound limit analysis[J]. Advances in Engineering Software, 2003, 34(6): 321-338.
    [19] CIRIA H, PERAIRE J, BONET J.Mesh adaptive computation of upper and lower bounds in limit analysis[J]. International Journal of Numerical Methods in Engineering, 2008, 75: 899-944.
    [20] SMITH C, GILBERT M.Application of discontinuity layout optimization to plane plasticity problems[J]. Proceedings the Royal of Society: A Mathematical, Physical and Engineering Sciences, 2007, 463: 2461-2484.
    [21] DORN W S, GOMORY R E, GREENBERG H J.Automatic design of optimal structures[J]. Journal de Mechanique, 1964, 3(1): 25-52.
    [22] GILBERT M, TYAS A.Layout optimisation of large-scale pin-jointed frames[J]. Engineering Computations 2003, 20(8): 1044-1064.
    [23] HUANG Q, JIA C, XIA B, et al. Novel computational implementations for stability analysis[J]. Applied Mechanics and Materials2011, 90/91/92/93: 778-785.
    [24] GILBERT M, CASAPULLA C, AHMED H M.Limit analysis of masonry block structures with non-associative frictional joints using linear programming[J]. Computers and Structures, 2006, 84(13/14): 873-887.
    [25] ZHANG K, CAO P, MA G, et al.Stability analysis of rock slope controlled by major geological discontinuities based on the extended kinematical element method[J]. Rock Mechanics and Rock Engineering, 2016, 49(7): 2967-2975.
    [26] 孙平, 陈玺, 王玉杰. 边坡稳定极限分析斜条分上限法的全局优化方法[J]. 水利学报, 2018, 49(6): 741-748.
    (SUN Ping, CHEN Xi, WANG Yu-jie.A global optimization algorithm of upper bound method with inclined interface blocks for slope stability[J]. Journal of Hydraulic Engineering, 2018, 49(6): 741-748. (in Chinese))
  • 期刊类型引用(22)

    1. 石延杰,王健,陈青山,张浦阳,任建宇. 海上风电倾斜螺旋群桩基础适用性分析. 港口航道与近海工程. 2024(01): 44-49 . 百度学术
    2. 韦芳芳,包淑珉,邵盛,王永泉,孔纲强. 砂土中螺旋桩在斜拉荷载作用下的承载性能. 河海大学学报(自然科学版). 2024(02): 77-83 . 百度学术
    3. 杨伟华,胡雪扬,张浦阳,甘毅,陈青山. 砂土中海上倾斜螺旋群桩基础承载特性研究. 南方能源建设. 2024(02): 82-92 . 百度学术
    4. 胡伟,李砥柱,林志,冯世进,黄勇祥. 双锚片螺旋锚倾斜拉拔承载特性与承载力计算方法研究. 岩土力学. 2024(06): 1661-1674+1685 . 百度学术
    5. 李建彪,邬叶飞,马思伟,孙昌利,邵康. 土体侧移作用下螺旋钢桩被动承载机理分析. 路基工程. 2024(05): 32-38 . 百度学术
    6. 邬叶飞,高平,高丽峰,王华志,邵康. 砂土地层中多叶片螺旋钢桩压缩承载特性研究. 路基工程. 2024(05): 64-70 . 百度学术
    7. 李幸周,杨振国,黄炎,余东起. 螺旋锚单锚基础在500 kV输电线路中的应用探析. 电力勘测设计. 2024(S2): 14-21 . 百度学术
    8. 刘利民,王治伟,高明德,叶永明,阎石,张曰果. 水平单调加载下新型组合式螺旋锚复合地基基本力学性能. 地震工程与工程振动. 2023(02): 239-246 . 百度学术
    9. 胡伟,王辉,姚琛,郝冬雪,史旦达. 砂土中水平矩形锚板竖向拉拔承载全域内三维统一力学模型与承载力计算方法研究. 岩土力学. 2023(06): 1811-1825 . 百度学术
    10. 周为华,高明德,叶永明,杨立. 砂土地基增强套管螺旋锚组合基础试验研究. 建筑结构. 2023(S1): 2578-2582 . 百度学术
    11. 高明德,庾思黎,叶永明,周为华. 大小螺旋锚组合型基础现场试验研究. 工业建筑. 2023(S1): 539-542 . 百度学术
    12. 周震. 锚桩竖向荷载抗拔模型试验研究. 土工基础. 2022(01): 102-105 . 百度学术
    13. 黄勇祥,丁士君,袁小超,翟国光,丁民涛. 青藏高原碎石土地基混凝土承台式螺旋锚基础原位载荷试验及承载机制分析. 建筑结构. 2022(04): 148-152+105 . 百度学术
    14. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 . 百度学术
    15. 胡伟,杨瑶,刘顺凯,林志,吴秋红,黄勇祥. 光伏支架螺旋桩斜向拉拔承载特性试验研究. 太阳能学报. 2022(12): 50-61 . 百度学术
    16. 马建军,王满,刘家宇,聂梦强,王连华. 基于Winkler地基理论的横向受荷长桩非线性动力响应模型试验. 振动与冲击. 2021(01): 39-44+67 . 百度学术
    17. 韦芳芳,华子伟,邵盛,于玮伟,朱俞. 砂土中倾斜螺旋桩水平承载性能有限元分析. 河北工程大学学报(自然科学版). 2021(01): 13-19 . 百度学术
    18. 韦芳芳,邵盛,陈道申,徐庆鹏,邹本为,孔纲强. 黏土中倾斜螺旋桩的水平承载性能数值模拟及理论研究. 东南大学学报(自然科学版). 2021(03): 463-472 . 百度学术
    19. 刘志鹏,孔纲强,文磊,王志华,秦红玉. 砂土地基中倾斜螺旋桩群桩上拔与水平承载特性模型试验. 岩土力学. 2021(07): 1944-1950 . 百度学术
    20. 崔建国,田野,刘君巍,侯绪研,崔江磊,杨飞,王晶,关祥毅. 月壤临界尺度颗粒运移特性对钻采阻力影响研究. 岩土工程学报. 2021(09): 1715-1723 . 本站查看
    21. 林志,胡伟,赵璞,陈秋南,贺建清,陈洁,史旦达. 砂土中平板圆锚倾斜拉拔承载特性模型试验研究. 岩土力学. 2021(11): 3059-3068+3168 . 百度学术
    22. 吴立晴,邵国栋,盛寒柯,王文明. 螺旋锚在软黏土中上拔承载力计算与数值模拟分析. 低温建筑技术. 2021(10): 120-124 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  284
  • HTML全文浏览量:  4
  • PDF下载量:  165
  • 被引次数: 37
出版历程
  • 收稿日期:  2018-11-22
  • 发布日期:  2019-12-24

目录

    /

    返回文章
    返回