• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

液化场地-群桩基础-结构体系动力响应分析—大型振动台模型试验研究

许成顺, 豆鹏飞, 杜修力, 陈苏, 李霞

许成顺, 豆鹏飞, 杜修力, 陈苏, 李霞. 液化场地-群桩基础-结构体系动力响应分析—大型振动台模型试验研究[J]. 岩土工程学报, 2019, 41(12): 2173-2181. DOI: 10.11779/CJGE201912001
引用本文: 许成顺, 豆鹏飞, 杜修力, 陈苏, 李霞. 液化场地-群桩基础-结构体系动力响应分析—大型振动台模型试验研究[J]. 岩土工程学报, 2019, 41(12): 2173-2181. DOI: 10.11779/CJGE201912001
XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, LI Xia. Dynamic response analysis of liquefied site-pile group foundation-structure system —large-scale shaking table model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-2181. DOI: 10.11779/CJGE201912001
Citation: XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, LI Xia. Dynamic response analysis of liquefied site-pile group foundation-structure system —large-scale shaking table model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-2181. DOI: 10.11779/CJGE201912001

液化场地-群桩基础-结构体系动力响应分析—大型振动台模型试验研究  English Version

基金项目: 国家自然科学基金面上项目(51578026); 国家自然科学基金优秀青年基金项目(51722801); 国家自然科学基金创新研究群体项目(51421005)
详细信息
    作者简介:

    许成顺(1977— ),女,博士,教授,主要从事土动力学及地下结构抗震方面的科研工作。E-mail: xuchengshun@bjut.edu.cn。

    通讯作者:

    杜修力,E-mail:duxiuli@bjut.edu.cn

  • 中图分类号: TU411.93

Dynamic response analysis of liquefied site-pile group foundation-structure system —large-scale shaking table model test

  • 摘要: 进行了液化场地-结构体系动力相互作用大型振动台试验,对土体和桩基的加速度反应、饱和砂土层的孔压反应等进行了测试。重点阐述了土体和群桩基础的加速度地震响应特征和饱和土体的孔压发展规律,并对土体侧向变形规律进行了分析。试验研究结果表明:0.05g拍波输入时,土体和桩基对加速度反应有着明显放大作用,土体各处孔压比增长幅度不大,土体侧向位移较小;0.3g汶川地震卧龙台地震记录输入时,桩基加速度反应规律与土体反应基本一致,土体孔压比增长明显,上部土体完全液化;土体水平侧向变形较大。本文成果可为液化场地-群桩基础动力相互作用研究做对比分析和验证数值模拟工作提供参考。
    Abstract: In this large-scale shaking table model test, the acceleration responses of soil and structures and pore water pressures and other signals are measured. The seismic responses of soil and pile group foundations, the development of pore water pressure of liquefiable soil are introduced, and the lateral deformation of soil is analyzed. The results show that when 0.05g beat wave is input, the acceleration responses of soil and pile foundation are enlarged obviously, and the pore pressure ratio increases stightly throughout the soil. Besides, the lateral displacements of soil are small. When 0.3g Wenchuan Earthquake seismic record is input, the law of acceleration response of pile foundation is basically the same as that of soil. The pore pressures rise rapidly and the soil has been liquefied, and lateral displacements of soil are large. The results of this paper are dynamic response of liquefied non-free site test in a series of large-scale shaking table tests on soil-pile group-superstructure system. The results can be used for comparative analysis and verification of numerical simulation in the future.
  • [1] 程昌钧, 胡育佳, 朱媛媛, 等. 桩基的数学建模、理论分析与计算方法[M]. 北京: 科学出版社, 2009: 1-3.
    (CHENG Chang-jun, HU Yu-jia, ZHU Yuan-yuan, et al.Mathematical modeling, theoretical analysis and calculation method of pile foundation[M]. Beijing: Science Press, 2009: 1-3. (in Chinese))
    [2] LIYANAPATHIRANA D S, POULOS H G.Seismic lateral response of piles in liquefying soil[J]. J Geotech Geoenviron Eng, 2005, 131: 1466-1479.
    [3] LIYANAPATHIRANA D S, POULOS H G.Behavior of pile groups in liquefying soil[C]// Proceedings of GeoCongress 2006: Geotechnical Engineering in the Information Technology Age. Reston, Virginia, USA: ASCE Press, 2006: 1-6.
    [4] NOVAK M, EI SHARNOUBY B.Stiffness constants of single piles[J]. J Eng, 1983, 109(7): 961-974.
    [5] EL NAGGAR M H, NOVAK M. Nonlinear analysis for dynamic lateral pile response[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(4): 233-244.
    [6] MATLOCK H.Correlation for design of lateral loaded piles in soft clay[C]// Proceedings of the 2nd Offshore Technology in Civil Engineering. Reston, Virginia, USA, 1970: 577-594.
    [7] REESE L C, COX W R, KOOP F D.Field testing and analysis of laterally loaded piles in stiff clay[C]// Proceedings of the 7th Offshore Technology in Civil Engineering. Reston, Virginia, USA, 1997: 245-256.
    [8] 黄茂松, 吴志明, 任青, 等. 层状地基中群桩的水平振动特性[J]. 岩土工程学报, 2007, 29(1): 32-38.
    (HUANG Mao-song, WU Zhi-ming, REN Qing, et al.Lateral vibration of pile groups in layered soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 32-38. (in Chinese))
    [9] 唐亮. 液化场地桩-土动力相互作用p-y曲线模型研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    (TANG Liang.p-y model of dynamic pile-soil interaction in liquefying ground[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese))
    [10] HU Yu-jia, ZHU Yuan-yuan, CHENG Chang-jun, et al.EFGM for nonlinear mechanical behaviors of single pile and pile group[C]// Proceedings of the 5th International Conference on Nonlinear Mechanics. Shanghai: Shanghai University Press, 2007: 429-437.
    [11] 王建华, 陆建飞. 层状地基中考虑固结和流变的垂直单桩的理论分析[J]. 水利学报, 2001, 32(4): 57-61.
    (WANG Jian-hua, LU Jian-fei.Theoretical study on single pile in layered saturated soil considering the consolidation and theology[J]. Journal of Hydraulic Engineering, 2001, 32(4): 57-61. (in Chinese))
    [12] MOTAMED R, TOWHATA I, HONDA T.Pile group response to liquefaction-induced lateral spreading: E-defense large shake table test[J]. Soil Dynamics and Earthquake Engineering, 2013, 51(3): 35-46.
    [13] TABATA K, SATO M.E-defense shaking table test on the behavior of liquefaction-induced lateral spreading of large-scale model ground with a pile-foundation structure behind quay wall[C]// International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 2010: 1-6.
    [14] MOTAMED R, TOWHATA I, HONDA T, et al.Behavior of pile group behind a sheet pile quay wall subjected to liquefaction-induced large ground deformation observed in shaking test in E-defense project[J]. Soils and Foundations, 2009, 49(3): 459-475.
    [15] MOTAMED R, TOWHATA I, TOWHATA I.Shaking table tests on pile groups behind quay wall model undergoing lateral spreading[J]. Journal of Geotechnical and Geoenvironmental Engineeirng, ASCE, 2010, 136(3): 477-489.
    [16] HAERI S M, KAVAND A, RAHMANI I, et al.Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing[J]. Soil Dynamics and Earthquake Engineering, 2012, 38: 25-45.
    [17] 吕西林, 陈跃庆, 陈波, 等. 结构-地基动力相互作用体系振动台模型试验研究[J]. 地震工程与工程振动, 2000, 20(4): 20-29.
    (LÜ Xi-lin, CHEN Yue-qing, CHEN Bo, et al.Shaking table testing of dynamic soil-structure interaction system[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 20-29. (in Chinese))
    [18] LING Xian-zhang, GAO Xia, TANG Liang, et al.Effect of shaking intensity on interactive behavior of soil-pile group foundations in liquefiable soil during shaking table tests[C]// International Efforts in Lifeline Earthquake Engineering, 2013: 616-623.
    [19] TANG Liang, LING Xian-zhang, XU Peng-ju, et al.Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(1): 39-50.
    [20] 倪克闯. 成层土中桩基与复合地基地震作用下工作性状振动台试验研究[D]. 北京: 中国建筑科学研究院, 2013.
    (NI Ke-chuang.Shaking table test of pile and composite foundations’ dynamic behavior in layered soils subjected to earthquake excitation[D]. Beijing: China Academy of Building Research, 2013. (in Chinese))
    [21] BENNETT V, ZEGHAL M, ABDOUN T, et al.Wireless shape-acceleration array system for local identification of soil and soil structure systems[J]. Journal of the Transportation Research Board, 2007: 60-66.
  • 期刊类型引用(13)

    1. 汪云飞,王海军,赵新铭,汤雷,潘建伍. 热载荷下脆性固体中三维平行内裂纹的相互作用:实验和数值模拟(英文). Journal of Central South University. 2023(01): 331-350 . 百度学术
    2. 胡南燕,黄建彬,罗斌玉,李雪雪,陈敦熙,曾子懿,付晗,娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究. 岩土力学. 2023(12): 3471-3480 . 百度学术
    3. Jiyun Xu,Hanzhang Li,Haijun Wang,Lei Tang. Experimental study on 3D internal penny-shaped crack propagation in brittle materials under uniaxial compression. Deep Underground Science and Engineering. 2023(01): 37-51 . 必应学术
    4. Haijun Wang,Hanzhang Li,Lei Tang,Xuhua Ren,Qingxiang Meng,Chun Zhu. Fracture of two three-dimensional parallel internal cracks in brittle solid under ultrasonic fracturing. Journal of Rock Mechanics and Geotechnical Engineering. 2022(03): 757-769 . 必应学术
    5. Haijun Wang,Hanzhang Li,Lei Tang,Jianchun Li,Xuhua Ren. Fracturing behavior of brittle solids containing 3D internal crack of different depths under ultrasonic fracturing. International Journal of Mining Science and Technology. 2022(06): 1245-1257 . 必应学术
    6. 王海军,乐成军,汤雷,赵初,李汉章,戚海棠. 基于3D-ILC含水平内裂纹脆性固体三点弯断裂特性研究. 岩土力学. 2021(10): 2773-2784 . 百度学术
    7. 王海军,顾浩,任然,汤雷,郁舒阳,戚海棠. 基于3D-ILC脆性材料双共面与障碍内裂纹扩展特性. 煤炭学报. 2021(S1): 263-273 . 百度学术
    8. 张志韬,王海军,汤雷,赵初,李汉章,苏正洋. 基于3D-ILC含偏心内裂纹半圆弯拉断裂特性研究. 岩土力学. 2020(01): 111-122+131 . 百度学术
    9. 王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 . 百度学术
    10. 王海军,郁舒阳,汤子璇,汤雷,任然,徐进. 基于3D-ILC含60°内裂纹脆性球体Ⅰ-Ⅱ-Ⅲ型断裂研究. 岩土力学. 2020(05): 1573-1582 . 百度学术
    11. 王海军,张珂,任然,汤雷,郁舒阳. 基于3D-ILC含60°平行双内裂纹脆性巴西圆盘断裂特性. 工程科学与技术. 2020(04): 184-193 . 百度学术
    12. 金爱兵,王树亮,王本鑫,孙浩,陈帅军,朱东风. 基于DIC的3D打印交叉节理试件破裂机制研究. 岩土力学. 2020(12): 3862-3872 . 百度学术
    13. 王海军,郁舒阳,任然,汤雷,李欣昀,贾宇. 基于3D-ILC含内裂纹孔口脆性固体断裂特性试验. 岩土力学. 2019(06): 2200-2212 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  330
  • HTML全文浏览量:  17
  • PDF下载量:  398
  • 被引次数: 16
出版历程
  • 收稿日期:  2018-04-07
  • 发布日期:  2019-12-24

目录

    /

    返回文章
    返回