• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

特厚煤层掘进面围岩能量积聚特征及诱冲机制研究

朱斯陶, 姜福兴, 王绪友, 姜亦武, 宁廷洲, 孙邵华

朱斯陶, 姜福兴, 王绪友, 姜亦武, 宁廷洲, 孙邵华. 特厚煤层掘进面围岩能量积聚特征及诱冲机制研究[J]. 岩土工程学报, 2019, 41(11): 2071-2078. DOI: 10.11779/CJGE201911012
引用本文: 朱斯陶, 姜福兴, 王绪友, 姜亦武, 宁廷洲, 孙邵华. 特厚煤层掘进面围岩能量积聚特征及诱冲机制研究[J]. 岩土工程学报, 2019, 41(11): 2071-2078. DOI: 10.11779/CJGE201911012
ZHU Si-tao, JIANG Fu-xing, WANG Xu-you, JIANG Yi-wu, NING Ting-zhou, SUN Shao-hua. Energy accumulation characteristics and rockburst mechanism of surrounding rock at heading face of extra-thick coal seam[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2071-2078. DOI: 10.11779/CJGE201911012
Citation: ZHU Si-tao, JIANG Fu-xing, WANG Xu-you, JIANG Yi-wu, NING Ting-zhou, SUN Shao-hua. Energy accumulation characteristics and rockburst mechanism of surrounding rock at heading face of extra-thick coal seam[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2071-2078. DOI: 10.11779/CJGE201911012

特厚煤层掘进面围岩能量积聚特征及诱冲机制研究  English Version

基金项目: 国家自然科学基金项目(51674014,51904017); 中国博士后科学基金项目(2017M620624); 中央高校基本科研业务费专项资金项目(FRF-TP-17-076A1)
详细信息
    作者简介:

    朱斯陶(1990— ),男,博士,讲师,主要从事冲击地压防治方面的研究工作。E-mail: zhusitao123@163.com。

  • 中图分类号: TU45;TD32

Energy accumulation characteristics and rockburst mechanism of surrounding rock at heading face of extra-thick coal seam

  • 摘要: 以新疆硫磺沟煤矿特厚煤层掘进工作面为工程背景,采用现场调研、岩石力学试验和理论分析等方法,对特厚煤层掘进面围岩能量积聚特征及其诱冲机制进行了研究。研究认为:①根据硫磺沟煤矿9-15煤层与岩层的岩石力学试验结果,埋深在100~1000 m时,煤、岩层的能量密度与埋深成正比,煤层与岩层的能量密度比值为1.8~2.3,平均为2.1;②相同深度条件下特厚煤层掘进工作面围岩积聚弹性能远大于薄及中厚煤层,其积聚高弹性能的围岩结构是特厚煤层掘进面更容易发生冲击地压和冲击地压灾害更严重的原因之一;③掘进巷道影响范围内围岩积聚弹性能与煤层厚度和巷道半径成正比,且在同等巷道半径条件下,煤层厚度越大,巷道围岩积聚弹性能越大,当巷道半径为3.0 m时,围岩积聚的弹性能分别为巷道半径为2.5 m和2.0 m时围岩积聚弹性能的1.4倍和2.0倍;④提出的考虑煤层厚度和煤层冲击倾向性的冲击危险性评价方法比当前冲击危险性评价方法更加科学合理,评价结果也更符合现场实际情况。研究结果对特厚煤层掘进工作面冲击地压防治具有一定的借鉴意义。
    Abstract: Taking the extra-thick coal seam heading face in Liuhuanggou Coal Mine as the engineering background, the energy accumulation characteristics and rockburst mechanism of the surrounding rock at heading face of extra-thick coal seam are studied using field investigation, expriment of rock mechanics and theoretical analysis. The following results are obtained: (1) According to the exprimental results of rock mechanics of 9-15 coal seam and rock in Liuhuanggou Coal Mine, when the burial depth is between 100 and 1000 m, the energy density of coal and rock is proportional to the burial depth, and the energy density ratio of coal to rock is between 1.8 and 2.3. (2) Under the same depth conditions, the elastic energy accumulation of the surrounding rock at heading face of extra-thick coal seam is much larger than that of thin and medium-thick coal seam, and the structure of the surrounding rock with high elastic energy accumulation is one of the reasons that the heading face of the extra-thick coal seam is more prone to rockburst. (3) The accumulated elastic energy of the surrounding rock is proportional to the thickness of coal seam and the radius of roadway within the influence range of tunneling. Under the same radius of roadway, the greater the thickness of coal seam, the greater the accumulated elastic energy of the surrounding rock. When the radius of roadway is 3.0 m, the accumulated elastic energy of the surrounding rock is 1.4 times and 2.0 times that of the roadway radius when it is 2.5 and 2.0 m. (4) An evaluation method for impact hazard considering thickness and impact tendency of coal seam is proposed. This method is more scientific and reasonable than the current evaluation method for impact hazard, and the evaluated results are more in line with the actual situations. The research results can be used for reference in the prevention and control of rockburst at the heading face of the extra-thick coal seam.
  • [1] 杜涛涛, 李国营, 陈建强, 等. 新疆地区冲击地压发生及防治现状[J]. 煤矿开采, 2018, 23(2): 5-10.
    (DU Tao-tao, LI Guo-ying, CHEN Jian-qiang, et al.Rock burst occurrence and prevention status in Xinjiang region[J]. Coal Mining Technology, 2018, 23(2): 5-10. (in Chinese))
    [2] 杜涛涛, 李康, 蓝航, 等. 近直立特厚煤层冲击地压致灾过程分析[J]. 采矿与安全工程学报, 2018, 35(1): 140-145.
    (DU Tao-tao, LI Kang, LAN Hang, et al.Rockburst process analysis in steeply-inclined extremely-thick coal seam[J]. Journal of Mining & Safety Engineering, 2018, 35(1): 140-145. (in Chinese))
    [3] 蓝航. 浅埋煤层冲击地压发生类型及防治对策[J]. 煤炭科学技术, 2014, 42(1): 9-13.
    (LAN Hang.Prevention measures and types of mine strata pressurebump occurred in shallow depth seam[J]. Coal Science and Technology, 2014, 42(1): 9-13. (in Chinese))
    [4] 姜福兴, 魏全德, 王存文, 等. 巨厚砾岩与逆冲断层控制型特厚煤层冲击地压机理分析[J]. 煤炭学报, 2014, 39(7): 1191-1196.
    (JIANG Fu-xing, WEI Quan-de, WANG Cun-wen, et al.Analysis of rock burst mechanism in extra-thick coal seam controlled by huge thick conglomerate and thrust fault[J]. Journal of China Coal Society, 2014, 39(7): 1191-1196. (in Chinese))
    [5] 史先锋, 姜福兴, 朱海洲, 等. 特厚煤层分层工作面冲击地压事故后复产方案研究与实践[J]. 煤炭学报, 2015, 40(增刊1): 19-26.
    (SHI Xian-feng, JIANG Fu-xing, ZHU Hai-zhou, et al.Research and practice on restoring production of rock burst accident working face in top slice during slice mining of extra-thick coal seams[J]. Journal of China Coal Society, 2015, 40(S1): 19-26. (in Chinese))
    [6] 朱斯陶. 特厚煤层开采冲击地压机理与防治研究[D]. 北京:北京科技大学, 2017.
    (ZHU Si-tao.Mechanism and prevention of rockburst in extra-thick coal seams mining[D]. Beijing: University of Science and Technology Beijing, 2017. (in Chinese))
    [7] 许胜铭, 李松营, 李德翔, 等. 义马煤田冲击地压发生的地质规律[J]. 煤炭学报, 2015, 40(9): 2015-2020.
    (XU Sheng-ming, LI Song-ying, LI De-xiang, et al.Geological laws of rock burst occurrence in Yima coalfield[J]. Journal of China Coal Society, 2015, 40(9): 2015-2020. (in Chinese))
    [8] 蓝航. 近直立特厚两煤层同采冲击地压机理及防治[J]. 煤炭学报, 2014, 39(增刊2): 308-315.
    (LAN Hang.Rock-burst mechanism and prevention in mining sub-erect and extremely-thick coal seam with horizontal slicing method[J]. Journal of China Coal Society, 2014, 39(S2): 308-315. (in Chinese))
    [9] 蓝航, 杜涛涛. 急倾斜特厚煤层开采冲击地压发生过程监测与分析[J]. 煤炭科学技术, 2016, 44(6): 78-82.
    (LAN Hang, DU Tao-tao.Monitoring and analysis of rock burst process during steeply inclined and ultra thick seam mining[J]. Coal Science and Technology, 2016, 44(6): 78-82. (in Chinese))
    [10] 姜福兴, 王平, 冯增强, 等. 复合型厚煤层“震–冲”型动力灾害机理、预测与控制[J]. 煤炭学报, 2009, 34(2): 1605-1609.
    (JIANG Fu-xing, WANG Ping, FENG Zeng-qiang, et al.Mechanism,prediction and control of “rock burst induced by shock bump” kind dynamic accident in composite thickness coal[J]. Journal of China Coal Society, 2009, 34(2): 1605-1609. (in Chinese))
    [11] 刘少虹, 潘俊锋, 王书文, 等. 岩浆岩侵入区巨厚煤层掘进巷道冲击地压机制研究[J]. 岩石力学与工程学报, 2017, 36(11): 2699-2711.
    (LIU Shao-hong, PAN Jun-feng, WANG Shu-wen, et al.Rock burst mechanism of heading roadway in thick coal seam in magmatic intrusion areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2699-2711. (in Chinese))
    [12] 杨伟利, 姜福兴, 杨鹏, 等. 特厚煤层冲击地压重复发生的机理研究[J]. 岩土工程学报, 2015, 37(11): 2045-2050.
    (YANG Wei-li, JIANG Fu-xing, YANG Peng, et al.Mechanism of repeated rock bursts in extra-thick coal seam[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2045-2050. (in Chinese))
    [13] 窦林名, 李振雷, 何学秋. 厚煤层综放开采的降载减冲原理及其应用研究[J]. 中国矿业大学学报, 2018, 47(2): 221-230.
    (DOU Lin-ming, LI Zhen-lei, HE Xue-qiu.Principle of rockburst control by weakening static and dynamic loading using top-coal in the mining of thick coal seams[J]. Journal of China University of Mining & Technology, 2018, 47(2): 221-230. (in Chinese))
    [14] 潘俊锋, 连国明, 齐庆新, 等. 冲击危险性厚煤层综放开采冲击地压发生机理[J]. 煤炭科学技术, 2007, 35(6): 87-90, 94.
    (PAN Jun-feng, LIAN Guo-ming, QI Qing-xin, et al.Mechanism of rock outburst occurred from fully mechanized longwall top-coal caving and mining in thick seam with rock outburst danger in potential[J]. Coal Science and Technology, 2007, 35(6): 87-90, 94. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-27
  • 发布日期:  2019-11-24

目录

    /

    返回文章
    返回