• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

桩靴贯入黏土层时邻近桩挤土压力分析

郭东, 王建华, 范怡飞

郭东, 王建华, 范怡飞. 桩靴贯入黏土层时邻近桩挤土压力分析[J]. 岩土工程学报, 2019, 41(11): 2061-2070. DOI: 10.11779/CJGE201911011
引用本文: 郭东, 王建华, 范怡飞. 桩靴贯入黏土层时邻近桩挤土压力分析[J]. 岩土工程学报, 2019, 41(11): 2061-2070. DOI: 10.11779/CJGE201911011
GUO Dong, WANG Jian-hua, FAN Yi-fei. Soil pressures on pile shaft due to spudcan penetration in clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2061-2070. DOI: 10.11779/CJGE201911011
Citation: GUO Dong, WANG Jian-hua, FAN Yi-fei. Soil pressures on pile shaft due to spudcan penetration in clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2061-2070. DOI: 10.11779/CJGE201911011

桩靴贯入黏土层时邻近桩挤土压力分析  English Version

基金项目: 国家自然科学基金项目(51579174)
详细信息
    作者简介:

    郭 东(1993— ),男,硕士研究生,主要从事海洋土力学研究。E-mail: 13102235026@163.com。

    通讯作者:

    王建华,E-mail:tdwjh@eyou.com

  • 中图分类号: TU470

Soil pressures on pile shaft due to spudcan penetration in clay

  • 摘要: 采用CEL方法对桩靴贯入黏土层时邻近桩受到的挤土压力的变化进行了数值仿真分析。首先通过对离心模型试验结果的计算,验证了CEL方法的可行性。进一步,分析了桩靴贯入黏土层时,邻近桩桩身挤土压力的变化。结果表明,邻近桩靠近桩靴一面受到的挤土压力随桩土相对位移的增加而不断增大直到极限值,在泥面以下6倍邻近桩桩径范围内,桩身最大挤土压力随土层深度逐渐增加,其变化范围为3.5su~9.0su,当土层深度超过6倍邻近桩桩径后,桩身最大挤土压力趋于稳定,约9.0su;而远离桩靴一面受到的挤土压力随相对位移增加而不断减小,最终保持在1.5su~2.0su;桩身受到的挤土压力合力随桩土相对位移增加而不断增大直到极限,在泥面以下6倍邻近桩桩径范围内,桩身极限挤土压力合力随土层深度逐渐增加,其变化范围为2.0su~7.5su,当土层深度超过6倍邻近桩桩径后,桩身极限挤土压力合力趋于稳定,约7.5su。此外,净间距和黏土强度的改变,不会影响插桩挤土压力随相对位移的变化关系;当黏土弹性模量从100su增加到300su时,达到极限挤土压力所需的相对位移从0.3倍邻近桩桩净减小到0.1倍邻近桩桩净。
    Abstract: In order to analyze the soil pressures on the adjacent pile shaft during spudcan penetration, the CEL (coupled- Eulerian-Lagrangian) method is used to calculate the soil pressures, and the efficacy of the method is proved by comparison with a centrifugal model test. On this basis, the relationship between the soil-pile relative displacements and the soil pressures is analyzed. The results show that the soil pressures facing the spudcan increase with the soil-pile displacements: within 6 times the adjacent pile diameter below the mud surface, the maximum value along the pile increases with the depth, changing within the range of 3.5su~9.0su; and when the depth is more than 6 times the pile diameter, the maximum value tends to stabilize at about 9su. The soil pressures not facing the spudcan decrease with the soil-pile displacements, and the minimum value along the pile shaft is 1.5su ~2.0su. The resultant pressures increase with the soil-pile displacements: within 6 times the adjacent pile diameter below the mud surface, the ultimate soil pressure along the pile increases with the depth, and the changing range is 2.0su~7.5su; when it is deeper than 6 times the pile diameter, the ultimate soil pressure tends to stabilize at about 7.5su. In addition, the shear strength of clay and the spudcan-pile clearance have little influences on the relationship between the soil pressures and the relative displacements. And the relative displacements required to reach the ultimate soil pressure decrease from 0.3 to 0.1 times the pile diameter when the modulus increases from 100su to 300su.
  • [1] DE BEER E E. The effects of horizontal loads on piles due to surcharge or seismis effects[C]// Proceeding of 9th International Conference on Soil Mechnics and Foundation Engineering. Tokyo, 1997: 345-558.
    [2] BRANSBY M F.Difference between load-transfer relationships for laterally loaded pile groups: active p-y or passive p-δ[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(12): 1015-1018.
    [3] BAUER J, KEMOFERT H G, REUL O.Lateral pressure on piles due to horizontal soil movement[J]. International Journal of Physical Modelling in Geotechnics, 2016(4): 1-12.
    [4] PAN J L, GOH A T C, WONG K S, et al. Ultimate soil pressures for piles subjected to lateral soil movements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(6): 530-535.
    [5] MIAO L F, GOH A T C, WONG K S, et al. Three-dimensional finite element analyses of passive pile behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 30(7): 599-613.
    [6] KAHYAOGLU M R, IMANCLI G, OZTURK A U, et al.Computational 3D finite element analyses of model passive piles[J]. Computational Materials Science, 2009, 46(1): 193-202.
    [7] PAN J L, GOH A T C, WONG K S, et al. Three-dimensional analysis of single pile response to lateral soil movements[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(8): 747-758.
    [8] 李琳, 程青雷, 丁克胜, 等. 被动桩侧向土压力的三维数值模拟[J]. 水利水运工程学报, 2015(6): 17-24.
    (LI Lin, CHENG Qing-lei, DING Ke-sheng, et al.Three-dimensional numerical analyses of lateral soil pressure on passive pile[J]. Hydro-science and Engineering, 2015(6): 17-24. (in Chinese))
    [9] WHITE D J, THOMPSON M J, SULEIMAN M T, et al.Behavior of slender piles subject to free-field lateral soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 428-436.
    [10] 傅翔, 谢强, 张永兴, 等. 全埋式抗滑桩倾覆破坏的室内模型试验研究[J]. 岩土力学, 2014, 35(8): 2205-2211.
    (FU Xiang, XIE Qiang, ZHANG Yong-xing, et al.Model experimental study of toppling failure of fully-embedded anti-sliding pile[J]. Rock and Soil Mechanics, 2014, 35(8): 2205-2211. (in Chinese))
    [11] 蔡强, 李乾坤, 石胜伟, 等. 钢管抗滑短桩受力特性物理模型试验研究[J]. 岩土力学, 2016, 37(增刊2): 679-684.
    (CAI Qiang, LI Qian-kun, SHI Sheng-wei, et al.Study of mechanical characteristics of short anti-sliding steel pipe pile by physical model test[J]. Rock and Soil Mechanics, 2016, 37(S2): 679-684. (in Chinese))
    [12] CHENG X S, ZHENG G, DIAO Y, et al.Experimental study of the progressive collapse mechanism of excavations retained by cantilever piles[J]. Canadian Geotechnical Journal, 2017, 54(4): 574-587.
    [13] NGUYEN H H, KHABBAZ H, FATAHI B, et al.Bridge pile response to lateral soil movement induced by installation of controlled modulus columns[C]// Procedia Engineering. Guimaraes, 2016: 475-482.
    [14] XIE Y.Centrifuge model study on spudcan-pile interaction[D]. Singapore: National University of Singapore, 2009.
    [15] 王建华, 兰斐. 钻井船插桩对邻近桩影响的耦合欧拉-拉格朗日有限元方法研究[J]. 岩土力学, 2016, 37(4): 1127-1136.
    (WANG Jian-hua, LAN Fei.A coupled Eulerian-Lagrange FEM method for analyzing the effects of spudcan penetration on an adjacent pile[J]. Rock and Soil Mechanics, 2016, 37(4): 1127-1136. (in Chinese))
    [16] 戴笑如, 王建华, 范怡飞. 钻井船插桩CEL数值模拟中的若干问题[J]. 岩土力学, 2018, 39(6): 1001-1008.
    (DAI Xiao-ru, WANG Jian-hua, FAN Yi-fei.Analysis on several issues of numerical simulation of the spudcan penetration based on CEL method[J]. Rock and Soil Mechanics, 2018, 39(6): 1001-1008. (in Chinese))
    [17] HIBBITT D, KARLSSON B, SORENSEN P.ABAQUS6.13 analysis user’s guide[M]. HKS Co, 2013: 1229-1230.
    [18] 范怡飞, 王建华, 戴笑如. 基于土体的大变形分析钻井船插桩对邻近桩的影响[J]. 岩土工程学报, 2018, 40(1): 91-99.
    (FAN Yi-fei, WANG Jian-hua, DAI Xiao-ru.Analysis of effects of spudcan penetration on adjacent piles based on soil LDFE calculation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 91-99. (in Chinese))
    [19] FAN Y, WANG J H.Lateral response of piles subjected to a combination of spudcan penetration and pile head loads[J]. Ocean Engineering, 2018, 156: 468-478.
    [20] MATLOCK H.Correlation for design of laterally loaded piles in soft clay[C]// Offshore Technology in Civil Engineering. Houston, 1970: 77-94.
    [21] THO K K, LEUNG C F, CHOW Y K, et al.Eulerian finite element simulation of spudcan-pile interaction[J]. Canadian Geotechnical Journal, 2013, 50(6): 595-608.
  • 期刊类型引用(12)

    1. 王忠畅,李书兆,王丽勤,王忠涛,鲁金全. 霍尔锚落锚对水下沉箱位移影响数值分析. 海洋工程. 2024(04): 177-187 . 百度学术
    2. 陈诚,李元松,张鑫. 基于ALE与CEL法模拟吸力桶贯入过程对比研究. 武汉工程大学学报. 2024(05): 579-584 . 百度学术
    3. 张军菲,杨思凡,郑昆鹏. 软土地基预制桩沉桩对邻桩的扰动研究. 江西建材. 2024(09): 248-251 . 百度学术
    4. 裴东林,高磊,高明军,章晓进. 锚杆静压桩贯入特性影响因素研究. 甘肃科学学报. 2024(06): 19-24 . 百度学术
    5. 韩亚冲,夏志,沈晓鹏,陆争光,李书兆. 泥面下钢圆筒油气生产系统防护设施总体布置方案. 油气储运. 2023(05): 564-569 . 百度学术
    6. 王凯,武宗豪,韩若朗,乐丛欢,麦志辉,吴韩. 砂土中桩靴贯入深度对自升式风电安装船水平承载特性影响的试验研究. 南方能源建设. 2023(04): 1-10 . 百度学术
    7. 焦钰祺,贺林林,梁越,刘旭菲. 考虑结构性黏土应变软化效应的桩靴竖向承载特性研究. 岩土力学. 2022(05): 1374-1382 . 百度学术
    8. 易明星,朱长歧,王天民,刘海峰,马成昊,王星,张珀瑜,瞿茹. 启东某场地自升式平台插桩可行性试验研究. 岩土力学. 2022(S2): 487-496 . 百度学术
    9. 王永发,孙震洲,贺林林,黄珊珊. 海上升压站平移过程中自升式工作船桩靴沉降分析方法. 船舶工程. 2022(12): 149-156+165 . 百度学术
    10. 张海洋,刘润,贾沼霖. 自升式平台插桩对邻近平台桩基础的影响研究. 岩土工程学报. 2021(05): 867-876 . 本站查看
    11. 杨思谋,张雅宁,陈松. 预制桩挤土效应及邻近地铁车辆段结构力学响应. 公路. 2020(08): 428-432 . 百度学术
    12. 孙凯,王建华,范怡飞. 桩靴贯入结构性粘土时邻近桩水平响应数值分析. 港工技术. 2020(05): 20-25 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  305
  • HTML全文浏览量:  6
  • PDF下载量:  149
  • 被引次数: 24
出版历程
  • 收稿日期:  2018-06-13
  • 发布日期:  2019-11-24

目录

    /

    返回文章
    返回