• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

絮凝剂和缓凝剂对水泥固化疏浚淤泥浆效率的影响研究

章荣军, 董超强, 郑俊杰, 陆展

章荣军, 董超强, 郑俊杰, 陆展. 絮凝剂和缓凝剂对水泥固化疏浚淤泥浆效率的影响研究[J]. 岩土工程学报, 2019, 41(10): 1928-1935. DOI: 10.11779/CJGE201910018
引用本文: 章荣军, 董超强, 郑俊杰, 陆展. 絮凝剂和缓凝剂对水泥固化疏浚淤泥浆效率的影响研究[J]. 岩土工程学报, 2019, 41(10): 1928-1935. DOI: 10.11779/CJGE201910018
ZHANG Rong-jun, DONG Chao-qiang, ZHENG Jun-jie, LU Zhan. Influences of flocculant and retarder on solidification efficiency of cement in treatment of dredged mud slurry[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1928-1935. DOI: 10.11779/CJGE201910018
Citation: ZHANG Rong-jun, DONG Chao-qiang, ZHENG Jun-jie, LU Zhan. Influences of flocculant and retarder on solidification efficiency of cement in treatment of dredged mud slurry[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1928-1935. DOI: 10.11779/CJGE201910018

絮凝剂和缓凝剂对水泥固化疏浚淤泥浆效率的影响研究  English Version

基金项目: 国家重点研发计划项目(2016YFC0800200); 国家自然科学基金项目(51678266)
详细信息
    作者简介:

    章荣军(1983—),男,博士,副教授,主要从事疏浚淤泥固化与再生利用方面的研究工作。E-mail:ce_zhangrj@hust.edu.cn。

    通讯作者:

    郑俊杰,E-mail:zhengjj@hust.edu.cn

Influences of flocculant and retarder on solidification efficiency of cement in treatment of dredged mud slurry

  • 摘要: 在疏浚淤泥浆堆场表面形成硬壳层工作平台往往是进行堆场地基处理、缩短堆场周转期限的必要环节,但既有途径大多都涉及到在极端不利环境(泥沼)下的人力劳作,机械化程度低且施工速度极慢。鉴于此,基于常规水泥固化法(简称CCSM),提出了采用絮凝-固化联合法(简称FSCM)处理表层疏浚淤泥浆形成硬壳层的新思路,通过开展一系列室内模型试验,探讨了在处理疏浚淤泥浆时用FSCM代替CCSM(即引入絮凝剂和缓凝剂)的可行性和必要性,并重点分析了絮凝剂和缓凝剂剂量对水泥固化淤泥浆效率的影响规律。结果表明:FSCM能“飞跃式”提升水泥对疏浚淤泥浆的固化效率,在最优絮凝剂剂量条件下可将不排水抗剪强度提高至CCSM的4.8倍以上;另外,向FSCM中引入缓凝剂还能明显强化颗粒物理沉积/固结程度,进一步促进中晚期的强度发展,且在最优缓凝剂剂量条件下,不排水抗剪强度比不掺入缓凝剂时的不排水抗剪强度高35%以上。
    Abstract: It is usually necessary to build a working platform on the surface of the dumping site of dredged mud slurry for the purpose of rapid improvement of the dumping site so as to shorten the period of land occupation. Nevertheless, most of the existing methods for building the working platform need cumbersome manual work under extremely adverse conditions, and thus show very low construction automation and speed. To resolve this problem, a new method is proposed, i.e., the flocculation-solidification combined method (FSCM) for building the working platform based on the conventional cement stabilization method (CCSM). A series of laboratory model tests are performed to demonstrate the feasibility and necessity to substitute CCSM for FSCM in treatment of dredged mud slurry at extra high water content. Effort is also made to gain an insight into the influences of flocculant dosage and retarder dosage on the solidification efficiency of cement in treatment of mud slurry. The results indicate that FSCM is able to dramatically enhance the solidification efficiency of cement in treatment of mud slurry. When the optimal dosage of flocculant is added, the undrained shear strength produced by FSCM is at least 4.8 times larger than that produced by the corresponding CCSM. Moreover, introducing retarder into FSCM can further intensify the physical sedimentation/consolidation process, and thus promote the strength development at later curing age. In comparison with a FSCM case without adding retarder, the corresponding FSCM case with the optimal dosage of retarder shows a much higher undrained shear strength.
  • [1] .张和庆, 谢健, 朱伟. 疏浚物倾倒现状与转化为再生资源的研究——中国海洋倾废面临的困难和对策[J]. 海洋通报, 2004, 23(12): 54-60.
    (ZHANG He-qing, XIE Jian, ZHU Wei.Present situation of dredged materials dumping and the study of transforming dredged mud into regenerative resources——Difficulties of refuses dumping in China seas and countermeasures to deal with these problems[J]. Marine Science Bulletin, 2004, 23(12): 54-60. (in Chinese))
    [2] .胡兰文, 陈明, 杨泉, 等. 底泥重金属污染现状及修复技术进展[J]. 环境工程, 2017, 35(12): 115-118.
    (HU Lan-wen, CHEN Ming, YANG Quan, et al.Present situation of heavy metal pollution in sediments and its remediation technologies[J]. Environmental Engineering, 2017, 35(12): 115-118. (in Chinese))
    [3] .朱伟, 闵凡路, 吕一彦, 等. “泥科学与应用技术”的提出及研究进展[J]. 岩土力学, 2013, 34(11): 3041-3054.
    (ZHU Wei, MIN Fan-lu, LÜ Yi-yan, et al.Subject of “mud science and application technology” and its research progress[J]. Rock and Soil Mechanics, 2013, 34(11): 3041-3054. (in Chinese))
    [4] 杨茯苓, 董志良, 鲍树峰, 等. 新近吹填淤泥地基新型大面积砂被工作垫层工艺技术研发[J]. 重庆交通大学学报(自然科学版), 2018, 37(2): 66-75.
    (YANG Fu-ling, DONG Zhi-liang, BAO Shu-feng, et al.Technology research and development of new type of large area sand-quilt-cushion for newly hydraulic reclamation mud foundation[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(2): 66-75. (in Chinese))
    [5] .熊明, 安建新. 现场绑扎“竹格栅”在吹填造陆工程中的应用[C]// 全国超软土地基排水固结与加固技术研讨会. 天津, 2010: 86-90.
    (XIONG Ming, AN Jian-xin.The application of “bamboo grille” on the spot in landfill engineering[C]// National Symposium on Drainage Consolidation and Reinforcement of Soft Soil Foundation. Tianjin, 2010: 86-90. (in Chinese))
    [6] LIU Han-long, CHEN Yong-hui.Ground treatment of sea embankment by vacuum preloading with PVDs[J]. Journal of Southeast University (English Edition), 2004, 20(1): 96-101.
    [7] .刘青松, 于健. 上覆硬壳层的淤泥堆场极限承载力计算[J]. 中国港湾建设, 2017, 37(9): 32-37.
    (LIU Qing-song, YU Jian.Calculation of ultimate bearing capacity of the man-made crust over dredged wastes dump sites[J]. China Harbour Engineering, 2017, 37(9): 32-37. (in Chinese))
    [8] .刘青松, 张春雷, 汪顺才, 等. 淤泥堆场人工硬壳层地基极限承载力室内模拟研究[J]. 岩土力学, 2008, 29(增刊): 667-670.
    (LIU Qing-song, ZHANG Chun-lei, WANG Shun-cai, et al.Laboratory simulation study of the ultimate bearing capacity of the man-made crust over dredged wastes dump sites[J]. Rock and Soil Mechanics, 2008, 29(S0): 667-670. (in Chinese))
    [9] .ZHANG R J, SANTOSO A M, TAN T S, et al.Strength of high water-content marine clay stabilized by low amount of cement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 2170-2181.
    [10] KANG G, TSUCHIDA T, ATHAPATHTHU A M R G. Engineering behavior of cement-treated marine dredged clay during early and later stages of curing[J]. Engineering Geology, 2016, 209: 163-174.
    [11] JONGPRADIST P, YOUWAI S, JATURAPITAKKUL C.Effective void ratio for assessing the mechanical properties of cement-clay admixtures at high water content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(6): 621-627.
    [12] HORPIBULSUK S, RACHAN R, SUDDEEPONG A.Assessment of strength development in blended cement admixed Bangkok clay[J]. Construction and Building Materials, 2011, 25(4): 1521-1531.
    [13] WU D Q, XU W Y, ZHU D P.The chemical-physical combined method for improving clay slurry in land reclamation[J]. Geotechnical Special Publication, 2013, 232: 308-315.
    [14] CHEUNG J, JEKNAVORIAN A, ROBERTS L, et al.Impact of admixtures on the hydration kinetics of Portland cement[J]. Cement and Concrete Research, 2011, 41(12): 1289-1309.
    [15] MOSCHNER G, LOTHENBACH B, FIGI R, et al.Influence of citric acid on the hydration of Portland cement[J]. Cement and Concrete Research, 2009, 39(4): 275-282.
    [16] PANG X, BOONTHEUNG P, BOUL P J, et al.Dynamic retarder exchange as a trigger for Portland cement hydration[J]. Cement and Concrete Research, 2014, 63(9): 20-28.
    [17] WEI H, GAO B, REN J, et al.Coagulation / flocculation in dewatering of sludge: a review[J]. Water Research, 2018, 143: 608-631.
    [18] HE J, CHU J, TAN S K, et al.Sedimentation behavior of flocculant-treated soil slurry[J]. Marine Georesources & Geotechnology, 2016, 35(5): 593-602.
    [19] WANG J, NI J, CAI Y, et al.Combination of vacuum preloading and lime treatment for improvement of dredged fill[J]. Engineering Geology, 2017, 227: 149-158.
    [20] YOO J, SHIN H, JI S.An eco-friendly neutralization process by carbon mineralization for Ca-rich alkaline wastewater generated from concrete sludge[J]. Metals, 2017, 7(9): 371.
    [21] 孔祥明, 路振宝, 石晶, 等. 磷酸及磷酸盐类化合物对水泥水化动力学的影响[J]. 硅酸盐学报, 2012, 40(11): 1553-1558.
    (KONG Xiang-ming, LU Zhen-bao, SHI Jing, et al.Impacts of phosphoric acid and phosphates on hydration kinetics of Portland cement[J]. Journal of the Chinese Ceramic Society, 2012, 40(11): 1553-1558. (in Chinese))
    [22] 谭洪波, 林超亮, 马保国, 等. 磷酸盐对普通硅酸盐水泥早期水化的影响[J]. 武汉理工大学学报, 2015, 37(2): 1-4.
    (TAN Hong-bo, LIN Chao-liang, MA Bao-guo, et al.Effect of phosphate on the hydration of Portland cement at early age[J]. Journal of Wuhan University of Technology, 2015, 37(2): 1-4. (in Chinese))
    [23] TAN H, ZOU F, LIU M, et al.Effect of the adsorbing behavior of phosphate retarders on hydration of cement paste[J]. Journal of Materials in Civil Engineering, 2017, 29(9): 1-8.
  • 期刊类型引用(8)

    1. 王怀强,李孝波,王天虎,席书衡,宣雨童. 基于岩土竖向台阵开展场地地震反应研究的若干进展. 地震工程与工程振动. 2025(02): 50-63 . 百度学术
    2. 范宏飞,王彦臻,陈炜昀,陈国兴,赵凯. 水平成层海床场地非线性地震反应的流-固弱耦合分析. 振动工程学报. 2025(04): 849-859 . 百度学术
    3. 郭云峰. 岩土勘察中地震效应问题的研究. 科技与创新. 2023(13): 117-119+122 . 百度学术
    4. 王永光,梁建文,巴振宁. 基于修正阻尼的土体非线性模型及其在Abaqus中的实现. 岩土力学. 2023(08): 2287-2296 . 百度学术
    5. 陈国兴,夏高旭,王彦臻,金丹丹. 琼州海峡海床地震反应特性的一维非线性分析. 工程力学. 2022(05): 75-85 . 百度学术
    6. 赵凯,夏高旭,王彦臻,赵丁凤,庄海洋,陈国兴. 土–地下结构相互作用的三维弱耦合有效应力分析法. 岩土工程学报. 2022(05): 861-869 . 本站查看
    7. 阮滨,吉瀚文,王苏阳,贺鸿俊,苗雨. 基于台阵观测的基岩地震动入射波分离方法及数值验证. 岩土力学. 2022(09): 2615-2623+2642 . 百度学术
    8. 陈伟庚,刘洋,王栋,岳茂,张良. 西南山区铁路沿线反倾岩质边坡地震动力响应振动台试验研究. 铁道建筑. 2021(04): 93-96 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 16
出版历程
  • 收稿日期:  2019-01-25
  • 发布日期:  2019-10-24

目录

    /

    返回文章
    返回