• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高温后上海软黏土的土-水特性及微观机理试验研究

陈正发, 朱合华, 闫治国

陈正发, 朱合华, 闫治国. 高温后上海软黏土的土-水特性及微观机理试验研究[J]. 岩土工程学报, 2019, 41(10): 1914-1920. DOI: 10.11779/CJGE201910016
引用本文: 陈正发, 朱合华, 闫治国. 高温后上海软黏土的土-水特性及微观机理试验研究[J]. 岩土工程学报, 2019, 41(10): 1914-1920. DOI: 10.11779/CJGE201910016
CHEN Zheng-fa, ZHU He-hua, YAN Zhi-guo. Experimental study on soil-water characteristics and micromechanism of Shanghai soft clay after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1914-1920. DOI: 10.11779/CJGE201910016
Citation: CHEN Zheng-fa, ZHU He-hua, YAN Zhi-guo. Experimental study on soil-water characteristics and micromechanism of Shanghai soft clay after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1914-1920. DOI: 10.11779/CJGE201910016

高温后上海软黏土的土-水特性及微观机理试验研究  English Version

基金项目: 国家自然科学基金项目(51478345); 山东省自然科学基金项目(ZR2016DL08)
详细信息
    作者简介:

    陈正发(1971—),男,安徽蚌埠人,博士,副教授。主要从事隧道及地下建筑工程、岩土工程材料等方面的研究工作。E-mail:czf2002@126.com。

    通讯作者:

    朱合华,E-mail:zhuhehua@tongji.edu.cn

Experimental study on soil-water characteristics and micromechanism of Shanghai soft clay after high temperatures

  • 摘要: 土-水特征曲线(SWCC)是揭示非饱和土性状的主要本构关系,但对于100℃以上高温环境下软黏土的土-水特性研究很少。针对上海软黏土的常温(20℃)土样和105℃,150℃和200℃等高温加热4 h后的土样,采用气相法研究了高温作用后上海软黏土的土-水特征曲线随温度的变化,同时,通过扫描电镜(SEM)试验研究了高温后软黏土的土-水特性随温度变化的微观机理。试验结果表明100℃以上高温环境下上海软黏土的土-水特征曲线随温度升高呈逐渐下降趋势,说明随温度升高软黏土的持水能力下降,吸力降低,进气值减小。分析各温度下土样的SEM图像发现,土的总孔隙数量减少,但少量孔隙的孔径增大,从微观特征上说明了土-水特性随温度升高的变化趋势和变化机理。说明,孔隙数量和孔隙结构随温度升高发生的变化是导致软黏土的土-水特性随温度升高而变化的根本原因。
    Abstract: The soil-water characteristic curve (SWCC) is the main constitutive relation to reveal the properties of unsaturated soils. However, few researches on soil-water characteristics of unsaturated soils in high-temperature environment, especially over 100˚C, have been reported. The SWCC of soft clay from Shanghai at high temperature is investigated using the vapor phase technique. Different temperatures (20˚C, 105˚C, 150˚C and 200˚C) are adopted to dry the soft clay for 4 h before testing the SWCC. In addition, the microstructures of soft clay before and after high temperature are characterized by scanning electron microscopy (SEM). The results show that the SWCC of soft clay decreases gradually as temperature increases to >100˚C. Similarly, the water-retaining capacity, suction force and intake value of soft clay decrease with the increase of temperature. These results are mainly attributed to the variation of the microstructure of soft clay according to the SEM results. The number of pores of soils decreases, while the pore size of a small number of pores increases at high temperature, which accounts for the variation mechanism of SWCC of soft clay at high temperature. In a word, the change of pore number and pore structure with the increase of temperature is the fundamental reason for the change of water characteristics of soft clay with the increase of temperature.
  • [1] GARDENER W R.Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water-table[J]. Soil Science, 1958, 85(4): 228-232.
    [2] BROOKS R H, COREY A T.Hydraulic properties of porous medium-hydrology paper[R]. Fort Collins: Colorado State University, 1964.
    [3] MCKEE C R, BUMB A C.The importance of unsaturated flow parameters in designing a monitoring system for a hazardous wastes and environmental emergencies[C]// Proceeding of Hazardous Materials Control Research Institute National Conference. Houston, 1984: 50-58.
    [4] MCKEE C R, BUMB A C.Flow-testing coalbed methane production wells in the presence of water and gas[J]. SPE Formation Evaluation, 1987, 2(4): 599-608.
    [5] BUMB A C.Unsteady-state flow of methane and water in coalbeds[D]. Laramie: University of Wyoming, 1987.
    [6] WILLIAMS J, PREBBLE R E, WILLIAMS W T, et al.The influence of texture, structure and clay mineralogy on the soil moisture characteristic[J]. Australian Journal of Soil Research, 1983, 21(1): 15-32.
    [7] Van GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [8] PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradients[J]. Transactions, American Geophysical Union, 1957, 38(2): 222-232.
    [9] CHAHAL R S.Effect of temperature and trapped air on matric suction[J]. Soil Science, 1965, 100(4): 262-266.
    [10] HARIDASAN M, JENSEN R D.Effect of temperature on pressure head-water content relationship and conductivity of two soils[J]. Soil Science Society of America Journal, 1972, 36: 703-708.
    [11] HOPMANS J W, DANE J H.Temperature dependence of soil water retention curves[J]. Soil Science Society of America Journal, 1986, 50: 562-567.
    [12] SHE H Y, SLEEP B E.The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylene-water systems[J]. Water Resources Research, 1998, 34(10): 2587-2597.
    [13] CONSTANTZ J.Comparison of isothermal and isobaric water retention paths in nonswelling porous materials[J]. Water Resources Research, 1991, 27(12): 3165-3170.
    [14] BACHMANN J, HORTON R, GRANT S A, et al.Temperature dependence of water retention curves for wettable and water-repellent soils[J]. Soil Science Society of America Journal, 2002, 66: 44-52.
    [15] 王铁行, 卢靖, 岳彩坤. 考虑温度和密度影响的非饱和黄土土-水特征曲线研究[J]. 岩土力学, 2008, 29(1): 1-5.
    (WANG Tie-xing, LU Jing, YUE Cai-kun.Soil-water characteristic curve for unsaturated loess considering temperature and density effect[J]. Rock and Soil Mechanics, 2008, 29(1): 1-5. (in Chinese))
    [16] GRANT S A, SALEHZADEH A.Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions[J]. Water Resources Research, 1996, 32(2): 261-270.
    [17] 蔡国庆, 赵成刚, 刘艳. 非饱和土土-水特征曲线的温度效应[J]. 岩土力学, 2010, 31(4): 1055-1060.
    (CAI Guo-qing, ZHAO Cheng-gang, LIU Yan.Temperature effects on soil-water characteristic curve of unsaturated soils[J]. Rock and Soil Mechanics, 2010, 31(4): 1055-1060. (in Chinese))
    [18] 秦冰, 陈正汉, 孙发鑫, 等. 高吸力下持水曲线的温度效应及其吸附热力学模型[J]. 岩土工程学报, 2012, 34(10): 1877-1886.
    (QIN Bing, CHEN Zheng-han, SUN Fa-xin, et al.Temperature effect on water retention curve under high suction and its modeling based on thermodynamics of sorption[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1877-1886. (in Chinese))
    [19] GBT 50123—1999 土工试验方法标准[S]. 1999.
    (GBT 50123—1999 Standard for soil test method[S]. 1999. (in Chinese))
    [20] 叶为民, 白云, 金麒, 等. 上海软土土水特征的室内试验研究[J]. 岩土工程学报, 2006, 28(2): 260-263.
    (YE Wei-min, BAI Yun, JIN Qi, et al.Lab experimental study on soil-water characteristics of Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 260-263. (in Chinese))
    [21] 陈正发, 朱合华, 闫治国, 等. 高温后上海软黏土的物理性能试验研究[J]. 岩土工程学报, 2015, 37(5): 924-931.
    (CHEN Zheng-fa, ZHU He-hua, YAN Zhi-guo, et al.Experimental study on physical properties of Shanghai soft clay under high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 924-931. (in Chinese))
    [22] ROMERO E, GENS A, LLORET A.Temperature effects on the hydraulic behaviour of an unsaturated clay[J]. Geotechnical and Geological Engineering, 2001, 19(3/4): 311-332.
    [23] VILLAR M V, LLORET A.Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite[J]. Applied Clay Science, 2004, 26(1/2/3/4): 337-350.
    [24] TANG A M, CUI Y J.Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX-80 clay[J]. Canadian Geotechnical Journal, 2005, 42(1): 287-296.
    [25] FRANCOIS B, LALOUI L. ACMEG-TS, A constitutive model for unsaturated soils under non-isothermal conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(16): 1955-1988.
    [26] 叶为民, 唐益群, 崔玉军. 室内吸力量测与上海软土土水特征[J]. 岩土工程学报, 2005, 27(3): 347-349.
    (YE Wei-min, TANG Yi-qun, CUI Yu-jun.Measurement of soil suction in laboratory and soil-water characteristics of Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 347-349. (in Chinese))
    [27] YE W M, WAN M, CHEN B, et al.Effect of temperature on soil-water characteristics and hysteresis of compacted Gaomiaozi bentonite[J]. Journal of Central South University of Technology, 2009, 16: 0821-0826.
  • 期刊类型引用(11)

    1. 丁凡煜,孙伟,张盛友,张攀科,文瑶,蔡发雄,朱艾伦. 高炉粒化矿渣协同矿化封存CO_2对充填体强度影响机制分析. 高校化学工程学报. 2025(01): 157-166 . 百度学术
    2. 闵凡路,申政,李彦澄,袁大军,陈健,李凯. 盾构淤泥质废弃黏土氧化镁固化-碳化试验及碳化机制研究. 岩土力学. 2024(02): 364-374 . 百度学术
    3. 孔祥辉,梁允鹏,崔帅,王潇康,张思峰. 活性MgO碳化固化疏浚底泥的影响因素及作用机理. 建筑材料学报. 2024(07): 620-628 . 百度学术
    4. 刘小金,吴超凡,甄西东,王亚平,赖雄. 固化剂及固化土耐久性研究现状浅析. 湖南交通科技. 2023(01): 43-47 . 百度学术
    5. 金胜赫,王修山,吴越鹏. 矿渣-脱硫石膏-电石渣固化剂固化黏土的研究. 工程地质学报. 2023(02): 397-408 . 百度学术
    6. 张鹤年,穆琳,席培胜,阚梦璇,胡彩云. 氧化镁碳化生土砌块微观结构研究进展. 安徽科技学院学报. 2022(02): 69-74 . 百度学术
    7. 马学通,高德彬,雷颖,严耿升. 高含水率疏浚底泥固化及强度预测模型. 中国农村水利水电. 2022(09): 101-105 . 百度学术
    8. 陈鑫,俞峰,洪哲明,潘黎芳,刘兴旺,李瑛. 新型GS固化土与水泥土的力学特性对比研究. 工程地质学报. 2022(04): 1111-1121 . 百度学术
    9. 陈学军,班如龙,宋宇,李辉,潘宗源,王建强. 初始含水率对活性MgO碳化红黏土特性的影响. 中国科技论文. 2022(12): 1317-1324 . 百度学术
    10. 董博闻,王修山,沈森杰. 基于正交试验的复合土壤固化剂配合比设计研究. 人民长江. 2021(09): 193-197 . 百度学术
    11. 王伟,周航,李健,李娜. 碳化过程对水泥土力学特性影响的研究与评价. 铁道科学与工程学报. 2021(12): 3239-3246 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 22
出版历程
  • 收稿日期:  2018-09-10
  • 发布日期:  2019-10-24

目录

    /

    返回文章
    返回