• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

冲击荷载作用下花岗岩残积土的动力损伤与破坏机理

刘新宇, 张先伟, 孔令伟, 徐超

刘新宇, 张先伟, 孔令伟, 徐超. 冲击荷载作用下花岗岩残积土的动力损伤与破坏机理[J]. 岩土工程学报, 2019, 41(10): 1872-1881. DOI: 10.11779/CJGE201910011
引用本文: 刘新宇, 张先伟, 孔令伟, 徐超. 冲击荷载作用下花岗岩残积土的动力损伤与破坏机理[J]. 岩土工程学报, 2019, 41(10): 1872-1881. DOI: 10.11779/CJGE201910011
LIU Xin-yu, ZHANG Xian-wei, KONG Ling-wei, XU Chao. Structural damage and dynamic failure mechanism of granite residual soils under impact loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1872-1881. DOI: 10.11779/CJGE201910011
Citation: LIU Xin-yu, ZHANG Xian-wei, KONG Ling-wei, XU Chao. Structural damage and dynamic failure mechanism of granite residual soils under impact loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1872-1881. DOI: 10.11779/CJGE201910011

冲击荷载作用下花岗岩残积土的动力损伤与破坏机理  English Version

基金项目: 国家自然科学基金项目(41472292,11672320,41972285); 中国科学院青年创新促进会项目(2018363); 广西岩土力学与工程重点实验室课题项目(15-KF-02)
详细信息
    作者简介:

    刘新宇(1995—),男,山西省长治人,博士研究生,主要从事特殊土土力学的基础研究以及工程应用研究。E-mail:lxyucas@gmail.com。

    通讯作者:

    张先伟,E-mail:xwzhang@whrsm.ac.cn

Structural damage and dynamic failure mechanism of granite residual soils under impact loading

  • 摘要: 为调查冲击荷载作用下花岗岩残积土的力学行为,开展了不同冲击频率(3~15 Hz)和振幅(100~400 kPa)影响的循环冲击试验,分析冲击荷载引起的超静孔隙水压力和变形的发展规律。结果表明:振幅和频率的影响均存在临界值,振幅与频率超过临界值时,土体损伤强烈会引起强度迅速衰减。低频与超高频冲击下更易产生较高孔压,从而导致有效应力降低进而引起强度下降。根据冲击应力与应变的滞回曲线的形态特征提出了花岗岩残积土冲击动力损伤的3个定量评价参数,并据此提出了3种冲击破坏类型与辨识方法,指出冲击能量耗散引起的结构损伤及塑形变形累积是花岗岩残积土产生冲击破坏的根本原因,其影响程度取决于土的原始结构强度与微观裂隙发育程度,也与冲击模式和应力水平导致的裂隙扩展规律和塑性累积变形大小有关。工程实践中应查明土体在冲击荷载下的临界振幅与临界频率,尽可能避免采用高振幅与低频率及超高频率荷载冲击土体。研究有助于了解冲击荷载的作用规律和土体力学响应,为中国花岗岩风化地层的施工与设计提供科学理论指导。
    Abstract: A series of impact tests with various frequencies and amplitudes are performed to study the influences of impact loading on the mechanical behaviors of granite residual soils, particularly for the development of deformation and excess pore water pressure. Similar critical values for amplitude and frequency are observed. Once the amplitude and frequency exceed their critical values, the soil is damaged severely and its strength decreases. Under the impact loading with low frequency or ultra-high frequency, higher pore water pressure is generated, resulting in a decrease of the effective stress and strength. Three quantitative parameters of the morphological features of the hysteresis curve are proposed to evaluate the dynamic damage of granite residual soils. Furthermore, three modes of impact damage and their characteristics are suggested. The structural damage caused by impact energy dissipation and accumulation of plastic deformation is proved to be the dominant cause of soil failure. The influence degree of impact loading on the granite residual soils depends on the natural structure strength and the amount of micro-cracks of the soil, as well as the propagation of cracks and plasticity strain induced by impact loading. Based on test results, it is suggested that the critical value for amplitude and frequency of the soils be ascertained before construction and impact loading with high-amplitude and low or ultra-high frequency be avoided. This study can enhance the understanding of the mechanical response of soils under impact loading and provide technical guidance for construction.
  • [1] ZHANG X W, KONG L W, LI J J.Influence of dry and wet seasons on disintegration characteristics of basalt residual soil from the Leizhou Peninsula, China[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2018, 51(4): 1-11.
    [2] 尹松, 孔令伟, 张先伟, 等. 基于自钻式旁压仪的残积土原位力学特性试验研究[J]. 岩土工程学报, 2016, 38(4): 688-695.
    (YIN Song, KONG Ling-wei, ZHANG Xian-wei, et al.Experimental study on the in-situ properties of residual soil by self-boring pressuremeter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 688-695. (in Chinese))
    [3] 周小文, 刘攀, 胡黎明, 等. 结构性花岗岩残积土的剪切屈服特性试验研究[J]. 岩土力学, 2015, 36(增刊2): 157-163.
    (ZHOU Xiao-wen, LIU Pan, HU Li-ming, et al.An experimental study of shear yield characteristics of structured granite residual soil[J]. Rock and Soil Mechanics, 2015, 36(S2): 157-163. (in Chinese))
    [4] 尹松, 孔令伟, 杨爱武, 等. 花岗岩残积土填料路用工程特性室内试验研究[J]. 岩土力学, 2016, 37(增刊2): 287-293.
    (YIN Song, KONG Ling-wei, YANG Ai-wu, et al.Indoor experimental study of road performance of granite residual soil for subgrade filling materials[J]. Rock and Soil Mechanics 2016, 37(S2): 287-293. (in Chinese))
    [5] 胡华, 梁建业, 蔡亮, 等. 含水率对花岗岩残积土动态流变损伤力学特性与损伤度影响试验研究[J]. 水利学报, 2015, 46(增刊1): 54-58.
    (HU Hua, LIANG Jian-ye, CAI Liang, et al.Experiment and research on dynamic rheological damage mechanics characteristics and damage degree influence with different moisture content of granite residual soil[J]. Journal of Hydraulic Engineering, 2016, 46(S1): 54-58. (in Chinese))
    [6] 张先伟, 刘新宇, 孔令伟, 等. 爆破冲击荷载下花岗岩残积土的力学响应试验研究[J]. 中国科学:技术科学, 2019, 49(6): 690-702.
    (ZHANG Xian-wei, LIU Xin-yu, KONG Ling-wei, et al.Experimental study on mechanical characteristics of granite residual soil under blast loading[J]. Scientia Sinica Technologica, 2019, 49(6): 690-702. (in Chinese))
    [7] 胡华, 蔡亮, 梁健业, 等. 花岗岩残积土冲击损伤与损伤演化特性试验研究[J]. 岩土力学, 2015, 36(增刊1): 25-30.
    (HU Hua, CAI Liang, LIANG Jian-ye, et al.Experimental research on impact damage and damage evolution characteristics of granite saprolite[J]. Rock and soil mechanics, 2015, 36(S1): 25-30. (in Chinese))
    [8] WOMAC A R, TOMPKINS F D, DRUMM E C, et al.Measuring dynamic response of soil subjected to impact loading[J]. Soil and Tillage Research, 1989, 14(1): 25-38.
    [9] GUPTA C P, VISVANATHAN, et al. Dynamic behavior of saturated soil under impact loading[J]. Transactions of the American Society of Agricultural Engineers, 1993, 36(4): 1001-1007.
    [10] XUE X H, REN T H, ZHANG W H.Analysis of fatigue damage character of soils under impact load[J]. Journal of Vibration and Control, 2013, 19(11): 1728-1737.
    [11] ZHANG DAN, ZHU Z W, LIU Z J, et al.Dynamic mechanical behavior and numerical simulation of frozen soil under impact loading[J]. Shock and Vibration, 2016(6): 1-16.
    [12] DARYAEI R, ESLAMI A.Settlement evaluation of explosive compaction in saturated sands[J]. Soil Dynamics and Earthquake Engineering, 2017(97): 241-250.
    [13] HANSBO S.Dynamic consolidation of soil by a falling weight[J]. Ground Engineering, 1978, 11(5): 27-30.
    [14] FENG S, TAN K, SHUI W, et al.Densification of desert sands by high energy dynamic compaction[J]. Engineering Geology, 2013, 157(8): 48-54.
    [15] 焦贵德, 赵淑萍, 马巍, 等. 循环荷载下高温冻土的变形和强度特性[J]. 岩土工程学报, 2013, 35(8): 1553-1558.
    (JIAO Gui-de, ZHAO Shu-ping, MA Wei, et al.Deformation and strength of warm frozen soils under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1553-1558. (in Chinese))
    [16] 聂庆科, 李佩佩, 王英辉, 等. 三轴冲击荷载作用下红黏土的力学性状[J]. 岩石力学与工程学报, 2009, 28(6): 1220-1225.
    (NIE Qing-ke, LI Pei-pei, WANG Ying-hui, et al.Mechanical characteristics of red clay under triaxial impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1220-1225. (in Chinese))
    [17] 林伟弟, 李彰明, 罗智斌. 三轴冲击荷载作用下淤泥力学响应研究[J]. 岩土力学, 2015, 36(7): 1966-1972.
    (LING Wei-di, LI Zhang-ming, LUO Zhi-bin.Mechanical responses of muck under triaxial impact loading[J]. Rock and Soil Mechanics, 2015, 36(7): 1966-1972. (in Chinese))
    [18] ASTM standard D2487. Standard practice for classification of soils for engineering purposes[S]. 2006.
    [19] ZHANG X W, KONG L W, YIN SONG, et al.Engineering geology of basaltic residual soil in Leiqiong, southern China[J]. Engineering Geology, 2017, 220: 196-207.
    [20] MAYNE P W, JONES J S.Impact stresses during dynamic compaction[J]. American Society of Civil Engineers, 1983, 109(10): 1342-1346.
    [21] ASTM standard D5311M-13. Standard test methods for load controlled cyclic triaxial strength of soil[S]. 2013.
    [22] HENKEL D J, GILBERT G D.The effect measured of the rubber membrane on the triaxial compression strength of clay samples[J]. Géotechnique, 1952, 3(1): 20-29.
    [23] 席道瑛, 刘小燕, 张程远. 由宏观滞回曲线分析岩石的微细观损伤[J]. 岩石力学与工程学报, 2003, 22(2): 182-187.
    (XI Dao-ying, LIU Xiao-yan, ZHANG Cheng-yuan.Analysis of micro and mesodamage of rock by macro-hysteresis curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 182-187. (in Chinese))
    [24] KONG W K.Blasting assessment of slopes and risks planning[J]. Australian Journal of Civil Engineering, 2012, 10(2): 177-191.
    [25] 张志呈. 浅谈评价爆破地震效应的方法和标准[J]. 爆破器材, 1998, 27(3): 32-35.
    (ZHANG Zhi-cheng.Primary discussion to the methods and criteria of evaluating blasting ground vibration effects[J]. Explosive Materials, 1998, 27(3): 32-35. (in Chinese))
    [26] MORTEZAIE A R, VUCETIC MLADEN.Effect of frequency and vertical stress on cyclic degradation and pore water pressure in clay in the NGI simple shear device[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(10): 1727-1737.
    [27] LEI H Y, LI BIN, LU H B, et al.Dynamic deformation behavior and cyclic degradation of ultrasoft soil under cyclic loading[J]. American Society of Civil Engineers, 2016, 28(11): 1-10.
    [28] 焦贵德, 赵淑萍, 马巍, 等. 循环荷载下冻土的滞回圈演化规律[J]. 岩土工程学报, 2013, 35(7): 1343-1349.
    (JIAO Gui-de, ZHAO Shu-ping, MA Wei, et al.Evolution laws of hysteresis loops of frozen soil under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1343-1349. (in Chinese))
    [29] 葛修润, 蒋宇, 卢允德, 等. 周期荷载作用下岩石疲劳变形特性试验研究[J]. 岩石力学与工程学报, 2003, 22(10): 1581-1585.
    (GE Xiu-run, JIANG Yu, LU Yun-de, et al.Testing study on fatigue deformation law of rock under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10): 1581-1585. (in Chinese))
计量
  • 文章访问数:  347
  • HTML全文浏览量:  16
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-06
  • 发布日期:  2019-10-24

目录

    /

    返回文章
    返回