[1] |
KOKUSHO T.Cyclic triaxial test of dynamic soil properties for wide strain range[J]. Soils and Foundations, 1980, 20(2): 45-60.
|
[2] |
梁珂, 陈国兴, 何杨, 等. 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4): 1368-1376. (LIANG Ke, CHEN Guo-xing, HE Yang, et al.An innovative method for the calculation of dynamic modulus and damping ratio based on the theory of correlation function[J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376. (in Chinese))
|
[3] |
MENQ F.Dynamic properties of sandy and gravelly soils[D]. Austin: The University of Texas at Austin, 2003.
|
[4] |
HARDIN B O, DRNEVICH V P.Shear modulus and damping in soils: design equations and curves[J]. Journal of Soil Mechanics and Foundations Division, 1972, 98(SM7): 667-692.
|
[5] |
MARTIN P P, SEED H B.One-dimensional dynamic ground response analyses[J]. Journal of the Geotechnical Engineering Division, 1982, 108(7): 935-952.
|
[6] |
MATASOVIC N, VUCETIC M.Cyclic characterization of liquefiable sands[J]. Journal of Geotechnical Engineering, 1993, 11(119): 1805-1822.
|
[7] |
DARENDELI M B.Develope of a new family of normalized modulus reduction and material damping curves[D]. Austin: The University of Texas at Austin, 2001.
|
[8] |
CHEN G, ZHOU Z, SUN T, et al.Shear modulus and damping ratio of sand-gravel mixtures over a wide strain range[J]. Journal of Earthquake Engineering, 2019, 23(8): 1407-1440.
|
[9] |
POLITO C P, GREEN R A, LEE J.Pore pressure generation models for sands and silty soils subjected to cyclic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(10): 1490-1500.
|
[10] |
JAFARIAN Y, TOWHATA I, BAZIAR M H, et al.Strain energy based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments[J]. Soil Dynamics and Earthquake Engineering, 2012, 35: 13-28.
|
[11] |
潘坤, 杨仲轩. 不规则动荷载作用下砂土孔压特性试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 79-84. (PAN Kun, YANG Zhong-xuan.Pore pressure characteristics of sand subjected to irregular loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 79-84. (in Chinese))
|
[12] |
赵丁凤, 梁珂, 陈国兴, 等. 剪切-体积应变耦合的孔压增量模型试验研究[J]. 岩土力学, 2019, 40(5): 1832-1840. (ZHAO Ding-feng, LIANG Ke, CHEN Guo-xing, et al.Experimental investigation on a new incremental excess pore pressure model characterized by cyclic shear-volume coupling[J]. Rock and Soil Mechanics, 2019, 40(5): 1832-1840. (in Chinese))
|
[13] |
ASTM D2487—11 Standard practice for classification of soils for engineering purposes[S]. 2011.
|
[14] |
吴琪, 陈国兴, 周正龙, 等. 细粒含量对细粒-砂粒-砾粒混合料动强度的影响[J]. 岩土工程学报, 2017, 39(6): 1038-1047. (WU Qi, CHEN Guo-xing, ZHOU Zheng-long, et al.Influences of fines content on cyclic resistance ratio of fines-sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1038-1047. (in Chinese))
|
[15] |
王谦, 李娜, 王平, 等. 甘南地区黄土的动模量与阻尼比特性研究[J]. 岩土工程学报, 2017, 39(增刊1): 192-197. (WANG Qian, LI Na, WANG Ping, et al.Behaviors of dynamic modulus and damping ratio of loess in Gannan region of Gansu Province[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 192-197. (in Chinese))
|
[16] |
李瑞山, 陈龙伟, 袁晓铭, 等. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报, 2017, 39(1): 71-80. (LI Rui-shan, CHEN Long-wei, YUAN Xiao-ming, et al.Experimental study on influences of different loading frequencies on dynamic modulus and damping ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 71-80. (in Chinese))
|
[17] |
孔令伟, 臧濛, 郭爱国. 湛江黏土动剪切模量的结构损伤效应与定量表征[J]. 岩土工程学报, 2017, 39(12): 2149-2157. (KONG Ling-wei, ZANG Meng, GUO Ai-guo.Structural damage effect on dynamic shear modulus of Zhanjiang clay and quantitative characterization[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2149-2157. (in Chinese))
|
[18] |
梁珂, 何杨, 陈国兴. 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究[J]. 岩土力学, 待刊. (LIANG Ke, HE Yang, CHEN Guo-xing. Experimental study on dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Island[J]. Rock and Soil Mechanics, in press.
|
[19] |
CHEN G X, ZHAO D F, CHEN W Y, JUANG C H.Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022.
|