• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

张开度影响的裂隙体破断机制探讨

蒲成志, 杨仕教, 张春阳

蒲成志, 杨仕教, 张春阳. 张开度影响的裂隙体破断机制探讨[J]. 岩土工程学报, 2019, 41(10): 1836-1844. DOI: 10.11779/CJGE201910007
引用本文: 蒲成志, 杨仕教, 张春阳. 张开度影响的裂隙体破断机制探讨[J]. 岩土工程学报, 2019, 41(10): 1836-1844. DOI: 10.11779/CJGE201910007
PU Cheng-zhi, YANG Shi-jiao, ZHANG Chun-yang. Fracture mechanism of pre-cracked specimens influenced by opening width[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1836-1844. DOI: 10.11779/CJGE201910007
Citation: PU Cheng-zhi, YANG Shi-jiao, ZHANG Chun-yang. Fracture mechanism of pre-cracked specimens influenced by opening width[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1836-1844. DOI: 10.11779/CJGE201910007

张开度影响的裂隙体破断机制探讨  English Version

基金项目: 国家自然科学基金青年基金项目(51704168,51404179); 中国博士后科学基金项目(2016M602417)
详细信息
    作者简介:

    蒲成志(1986—),男,博士,副教授,主要从事岩石断裂力学方面的试验与理论研究工作。E-mail:puchengzhi@foxmail.com。

    通讯作者:

    张春阳,E-mail:zcl2722@163.com

Fracture mechanism of pre-cracked specimens influenced by opening width

  • 摘要: 预制裂隙闭合形态是影响裂隙体模型破坏模式及破断机制的重要因素。为了系统探索裂隙闭合形态对裂隙体试件破断机理的影响,基于插片法用水泥砂浆材料制备了具有4种不同张开度的裂隙体试件,在RMT-150B试验机上开展了单轴加载试验,发现:裂隙体张开度为0.1 mm时,不同倾角裂隙体峰值强度变化规律与滑动裂纹模型理论(μ=0)揭示规律相吻合;张开度为0.2,0.4,0.8 mm时,不同倾角裂隙体峰值强度变化规律与滑动裂纹模型理论预测规律不一致。为探索压缩条件下张开裂隙模型的破断力学机制,基于弹性力学椭圆孔渐进应力场环境,结合应力叠加原理,分析了渐进应力场中法向压应力和横向压应力对孔口应力集中现象的贡献,给出了任意倾角椭圆型裂纹孔口环向集中应力的表达式,然后对试验过程中水平展布预制裂隙微裂纹发育特征与破断屈服过程的力学机理进行了分析和讨论;并基于线弹性断裂力学理论,讨论了渐进应力场中剪应力对尖端微裂纹发育的力学作用机理。
    Abstract: The closed form of pre-crack specimens is an important factor affecting their failure mode and breaking mechanism. In order to systematically explore the influence of the form of crack closure on the fracture mechanism of fracture specimens, four kinds of pre-cracked specimens with different opening widths are made of concrete by inserting thin slices, then the uniaxial compression tests are carried out using the RMT-150B tester after the curing process. The results show that the variation of the peak strength of pre-cracked specimens with different dip angles is consistent with the theory of sliding crack model when the friction coefficient (μ) of crack surfaces is zero and the opening width is 0.1 mm except 0.2, 0.4 and 0.8 mm. In order to explore the breaking mechanism of the specimens with an opened crack under compression, the contribution of normal and transverse compressive stresses to the stress concentration on the crack faces is analyzed based on the superposition principle and progressive field of stress in the region of the elliptic hole, and the formula for the circumferential concentrated stress of an elliptical crack with an arbitrary inclination angle is proposed. In addition, the development characteristics of micro-cracks and the breaking mechanism of pre-cracked specimens during the failure process are also analyzed and discussed. Finally, based on the theory of linear elastic fracture mechanics, the mechanism of shear stress on the development of microcracks at the pre-cracked tip is discussed.
  • [1] 李银平, 伍佑伦, 杨春和. 岩石类材料滑动裂纹模型[J]. 岩石力学与工程学报, 2007, 26(2): 278-284.
    (LI Yin-ping, WU You-lun, YANG Chun-he.Comparison of sliding crack models for rock-like materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 278-284. (in Chinese))
    [2] 郭少华. 岩石类材料压缩断裂的实验与理论研究[D]. 长沙: 中南大学, 2003.
    (GUO Shao-hua.The experimental and the oretical investigationon fracture of rock-type materials under compressive loading[D]. Changsha: Central South University, 2003. (in Chinese))
    [3] 陈枫. 岩石压剪断裂的理论与实验研究[D]. 长沙: 中南大学, 2002.
    (CHEN Feng.The theoretical and experimental investigation on rock fracture due to shear compression loading[D]. Changsha: Central South University, 2003. (in Chinese))
    [4] 尹祥础, 李世愚, 李红, 等. 闭合裂隙面相互作用的实验研究[J]. 地球物理学报, 1988, 31(3): 306-314.
    (YIN Xiang-chu, LI Shi-yu, LI Hong, et al.Experimental study of interactions between two flanks of a closed crack[J]. Acta Geophysicas Inica, 1988, 31(3): 306-314. (in Chinese))
    [5] 刘文德, 吴礼舟, 李部. 含预制裂纹砂浆材料压剪断裂试验分析[J], 科学技术与工程, 2016, 16(26): 98-103.
    (LIU Wen-de, WU Li-zhou, LI Bu.Experimental research on pre-existing cracks in mortar under compression[J]. Science Technology and Engineering, 2016, 16(26): 98-103. (in Chinese))
    [6] 李碧勇, 朱哲明. 压缩载荷作用下分支裂纹断裂与扩展的数值和实验研究[J]. 煤炭学报, 2013, 38(7): 1207-1214.
    (LI Bi-yong, ZHU Zhe-ming.Numerical and experimental research on the fracture and propagation of the branch crack under compression[J]. Journal of China Coal Society, 2013, 38(7): 1207-1214. (in Chinese))
    [7] 杨庆, 李强, 赵维, 等. 翼型裂纹扩展特性的试验和数值分析[J]. 水利学报, 2009, 40(8): 934-940.
    (YANG Qing, LI Qiang, ZHAO Wei, et al.Experimental study and numerical simulation on propagation characteristics of wing type cracks under compression[J]. Journal of Hydraulic Engineering, 2009, 40(8): 934-940. (in Chinese))
    [8] 赵永红. 受单轴压缩大理岩填充割缝周围的微裂纹生长[J]. 岩石力学与工程学报, 2004, 23(15): 2504-2509.
    (ZHAO Yong-hong.Mini-crack development from a cemented fracture in marble specimen under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2504-2509. (in Chinese))
    [9] 郭彦双, 朱维申. 压剪条件下预埋椭圆裂纹三维扩展实验研究[J]. 固体力学学报, 2011, 32(1): 64-73.
    (GUO Yan-shuang, ZHU Wei-shen.Experimental study on three-dimensional propagation from a pre-existing ellipse flaw under compression-shearing[J]. Chinese Journal of Solid Mechanics, 2011, 32(1): 64-73. (in Chinese))
    [10] 郭彦双, 马瑾, 汲云涛. 倾斜椭圆形裂纹的三维始裂状态[J]. 地球物理学进展, 2011, 26(4): 1206-1213.
    (GUO Yan-shuang, MA Jin, JI Yun-tao.Three-dimensional initial fracture states of an inclined elliptical flaw[J]. Progress in Geophysics, 2011, 26(4): 1206-1213. (in Chinese))
    [11] 郭少华, 孙宗颀. 压应力下脆性椭圆型裂纹的断裂规律[J]. 中南大学学报(自然科学版), 2001, 32(5): 457-460.
    (GUO Shao-hua, SUN Zong-qi.Fracture law of an elliptical brittle crack under compressive loading[J]. Journal of Central South University(Science and Technology), 2001, 32(5): 457-460. (in Chinese))
    [12] 李强, 杨庆. 压缩作用下岩石裂纹闭合判据的研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2721-2729.
    (LI Qiang, YANG Qing.Study on closing law of crack in rock mass under compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2721-2729. (in Chinese))
    [13] MCCLINTOCK F A, WALSH J B.Friction on Griffith cracks in rocks under pressure[C]// Proceedings of the Fourth US National Congress on Applied Mechanics. New York, 1961: 1015-1021.
    [14] 刘东燕, 刘东升. 含裂隙岩体抗压强度的理论探讨[C]// 岩石力学与工程学会第一届学术讨论会. 重庆, 1992: 35-40.
    (LIU Dong-yan, LIU Dong-sheng.Theoretical study on compressive strength of fractured rock mass[C]// First Symposium of the Society of Rock Mechanics and Engineering. Chongqing, 1992: 35-40. (in Chinese))
    [15] 郑安兴, 罗先启. 压剪应力状态下岩石复合型断裂判据的研究[J]. 岩土力学, 2015, 36(7): 1892-1898.
    (ZHENG An-xing, LUO Xian-qi.Research on combined fracture criterion of rock under compression-shear stress[J]. Rock and Soil Mechanics, 2015, 36(7): 1892-1898. (in Chinese))
    [16] 李强, 王伟, 韩现民. 压缩载荷下闭合斜裂纹的分支裂纹渐近扩展分析[J]. 工程力学, 2012, 29(9): 223-229.
    (LI Qiang, WANG Wei, HAN Xian-min.Asymptotic propagation of the branch crack path of the closed inclined flaw under compressive loading[J]. Engineering Mechanics, 2012, 29(9): 223-229. (in Chinese))
    [17] 李强, 张力霆, 齐清兰, 等. 压缩载荷下闭合裂纹的曲线分支裂纹模型研究[J]. 工程力学, 2013, 30(4): 294-300.
    (LI Qiang, ZHANG Li-ting, QI Qing-lan, et al.Study of the curve branch crack model for the closed flaw under compressive loading[J]. Engineering Mechanics, 2013, 30(4): 294-300. (in Chinese))
    [18] 岑章志, 秦飞, 杜庆华. 虑摩擦作用闭合裂纹应力强度因子计算的边界元分区算法[J]. 固体力学学报, 1989, 10(1): 1-11.
    (CEN Zhang-zhi, QIN Fei, DU Qing-hua.Two dimensional stress intensity factor computations by multi-domain boundary element method for crack closure with friction[J]. Chinese Journal of Solid Mechanics, 1989, 10(1): 1-11. (in Chinese))
    [19] 李银平, 杨春和. 裂纹几何特征对压剪复合断裂的影响分析[J]. 岩石力学与工程学报, 2006, 25(3): 462-466.
    (LI Yin-ping, YANG Chun-he.Influence of geometric characteristics of pre-existing cracks on mixed mode fractures under compression-shear loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 462-466. (in Chinese))
    [20] 朱传奇, 殷志强, 李传明. 压缩状态下张开型裂纹起裂扩展规律[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(10): 1105-1110.
    (ZHU Chuan-qi, YIN Zhi-qiang, LI Chuan-ming.Crack initiation extension law of opening type crack under compression state[J]. Journal of Liaoning Technical University(Natural Science), 2016, 35(10): 1105-1110. (in Chinese))
    [21] 程昌钧, 朱媛媛. 弹性力学[M]. 上海: 上海大学出版社, 2005.
    (CHENG Chang-jun, ZHU Yuan-yuan.Elastic mechanics[M]. Shanghai: Shanghai University Press, 2005. (in Chinese))
    [22] 蒲成志, 曹平, 陈瑜, 等. 不同裂隙相对张开度下类岩石材料断裂试验与破坏机理[J]. 中南大学学报(自然科学版), 2011, 42(8): 2394-2399.
    (PU Cheng-zhi, CAO Ping, CHEN Yu, et al.Fracture test and failure mechanism of rock-like material of relatively different fracture apertures[J]. Journal of Central South University (Science and Technology), 2011, 42(8): 2394-2399. (in Chinese))
    [23] MUSKHELISHVILI N I.Some basic problems of the mathematical theory of elasticity[M]. Leyden: Noordhoff, 1953.
  • 期刊类型引用(4)

    1. 王桂林,王力,王润秋,任甲山. 干湿循环后贯通型锯齿状红砂岩节理面剪切本构模型. 岩土力学. 2025(03): 706-720 . 百度学术
    2. 王宇,夏厚磊,茆苏徽,闫亮. 泥岩卸荷损伤-水次序作用下的劣化规律研究. 岩土工程学报. 2024(02): 385-395 . 本站查看
    3. 孙强,高千,张玉良,胡建军,耿济世,周书涛,袁士豪. 干热岩开发中高温水-岩作用下岩石应力腐蚀及多场损伤问题. 地球科学与环境学报. 2023(03): 460-473 . 百度学术
    4. 邓华锋,骆祚森,张景昱,周美玲,李建林. 库岸边坡消落带水-岩作用研究进展与展望. 三峡大学学报(自然科学版). 2023(05): 95-104 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  318
  • HTML全文浏览量:  8
  • PDF下载量:  167
  • 被引次数: 10
出版历程
  • 收稿日期:  2018-12-03
  • 发布日期:  2019-10-24

目录

    /

    返回文章
    返回