• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

滑带土环剪试验及其对水库滑坡临滑强度的启示

范志强, 唐辉明, 谭钦文, 杨迎铭, 温韬

范志强, 唐辉明, 谭钦文, 杨迎铭, 温韬. 滑带土环剪试验及其对水库滑坡临滑强度的启示[J]. 岩土工程学报, 2019, 41(9): 1698-1706. DOI: 10.11779/CJGE201909014
引用本文: 范志强, 唐辉明, 谭钦文, 杨迎铭, 温韬. 滑带土环剪试验及其对水库滑坡临滑强度的启示[J]. 岩土工程学报, 2019, 41(9): 1698-1706. DOI: 10.11779/CJGE201909014
FAN Zhi-qiang, TANG Hui-ming, TAN Qin-wen, YANG Ying-ming, WEN Tao. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706. DOI: 10.11779/CJGE201909014
Citation: FAN Zhi-qiang, TANG Hui-ming, TAN Qin-wen, YANG Ying-ming, WEN Tao. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706. DOI: 10.11779/CJGE201909014

滑带土环剪试验及其对水库滑坡临滑强度的启示  English Version

基金项目: 国家重点研发计划项目(2017YFC1501300)
详细信息
    作者简介:

    范志强(1992— ),男,博士研究生,主要从事岩土工程方面的学习和研究。E-mail: zqfan9235@foxmail.com。

    通讯作者:

    唐辉明,E-mail:tanghm@cug.edu.cn

Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides

  • 摘要: 滑坡临滑强度在滑坡研究中是一项重要内容,如何准确地确定其值是长期以来的重点和难点。开展滑带土环剪试验,不仅可以获取土体峰残强度参数,且能揭示土体剪切力学特性。通过黄土坡滑坡滑带土的环剪试验,确定出以180 kPa为界的高、低法向压应力区间,并分区间进行了土体剪切强度研究,分析了滑带土的剪切力学分区特性。揭示出本次滑带土以黏聚力下降为主(高压应力区下降44.8%,低压应力区下降93.8%),而摩擦角几乎不变(高、低压应力区峰残摩擦角之差分别为0.136°,0.468°)的峰后强度弱化机制。结合试验,通过引入黏聚力弱化系数,采用一种能反映滑坡演化过程的临滑强度反演方法,研究了不同工况下水库滑坡的临滑强度。并且从坡体受力状态和强度参数弱化的层面探讨了临滑强度因工况而异的原因,阐明其启示意义和工程意义。
    Abstract: The critical strength of landslides is important for their researches, and how to evaluate it accurately has been the focus and nodus. Conducting ring shear tests on slip soils can obtain the peak and residual strength parameters, and it is helpful to reveal the shearing properties of the soils. Thus, the ring shear tests on the slip soils sampled from Huangtupo landslide are carried out, and two normal stress partitions (namely high- and low-stress subareas) are determined with the boundary stress value of 180 kPa. Then, the soil strengths in this two stress partitions are studied. As a result, the post-peak strength-softening mechanism dominated by the decrease of cohesion (decreased by 44.8% in the high-stress subarea, and 93.8% in the low-stress subarea) and the constant of frictional angle (the difference between peak and residual frictional angles in the high-stress subarea is 0.136°, but 0.468° in the low-stress subarea) is illuminated for the slip soils. By employing a weakening coefficient of cohesion, the back analysis method is adopted to study the critical strength of the reservoir landslide under different working conditions. Eventually, by considering the variation of slope stress and the softening-properties of the soils, the reasons why the critical strength is related with the working conditions are discussed, and their enlightening significance and engineering significance are also expounded.
  • [1] 倪卫达, 唐辉明, 胡新丽, 等. 黄土坡临江I号崩滑体变形及稳定性演化规律研究[J]. 岩土力学, 2013, 34(10): 2961-2970.
    (NI Wei-da, TANG Hui-ming, HU Xin-li, et al.Research on deformation and stability evolution law of Huangtupo riverside slump-mass No.I[J]. Rock and Soil Mechanics, 2013, 34(10): 2961-2970. (in Chinese))
    [2] TANG H M, LI C D, HU X L, et al.Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring[J]. Landslides, 2015, 12: 511-521.
    [3] SKEMPTON A W.First-time slides in over-consolidated clays[J]. Géotechnique, 1970, 20(3): 320-324.
    [4] STARK TD, HUSSAIN M.Shear strength in preexisting landslides[J]. J Geotech Geoenviron Eng, 2010, 136(7): 957-962.
    [5] SKEMPTON A W.Residual strength of clays in landslides, folded strata and the laboratory[J]. Géotechnique, 1985, 35(1): 3-18.
    [6] BROMHEAD E N, DIXON N.The field residual strength of London clay and its correlation with laboratory measurements, especially ring shear tests[J]. Géotechnique, 1986, 36(3): 449-452.
    [7] STARK T D, EID H T.Drained residual strength of cohesive soils[J]. J Geotech Geoenviron Eng, 1994, 20(5): 856-871.
    [8] TIWARI B, BRANDON T L, MARUI H, et al.Comparison of residual shear strengths from back analysis and ring shear tests on undisturbed and remolded specimens[J]. J Geotech Geoenviron Eng, 2005, 131(9): 1071-1079.
    [9] LUPINI J F, SKINNER A E, VAUGHAN P R.The drained residual strength of the cohesive soils[J]. Géotechnique, 1981, 31(2): 181-213.
    [10] GIBO S, EGASHIRA K, OHTSUBO M.Residual strength of smectite-dominated soils from the Kamenose landslide in Japan[J]. Can Geotech J, 1987, 24: 456-462.
    [11] 刘动, 陈晓平. 滑带土环剪剪切面的微观观测与分析[J]. 岩土力学, 2013, 39(9): 1827-1834.
    (LIU Dong, CHEN Xiao-ping.Microscopic observation and analysis of ring shear surface of slip zone soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1827-1834. (in Chinese))
    [12] GIORGETTI C, CARPENTER B M, COLLETTINI C.Frictional behavior of talc-calcite mixtures[J]. J Geophys Res Soild Earth, 2015, 120: 6614-6633.
    [13] CHEN X F, MADDEN A S E, RECHES Z. The frictional strength of talc gouge in high-velocity shear experiments[J]. J Geophys Res Soild Earth, 2017, 122: 3661-3676.
    [14] ZHANG M, MCSAVENEY M J.Rock avalanche deposits store quantitative evidence on internal shear during runout[J]. Geophys Res Lett, 2017, 44: 8814-8821.
    [15] WANG Y F, DONG J J, CHENG Q G.Normal stress-dependent frictional weakening of large rock avalanche basal facies: implications for the rock avalanche volume effect[J]. J Geophys Res Soild Earth, 2018, 123: 3270-3282.
    [16] 陈传胜, 张建敏, 文仕知. 基于有效垂直应力水平的滑带土强度参数适用性研究[J]. 岩石力学与工程学报, 2011, 30(8): 1705-1711.
    (CHEN Chuan-sheng, ZHANG Jian-min, WEN Shi-zhi.Study of applicability of strength parameters of sliding zone soil based on effective vertical stress level[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1705-1711. (in Chinese))
    [17] LIU Z C, DAI S, NING F L.Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt[J]. Geophys Res Lett, 2018, 45: 715-723.
    [18] VITHANA S B, NAKAMURA S, KIMURA S, et al. Effects of overconsolidation ratios on the shear strength of remoulded slip surface soils in ring shear[J]. Eng Geol, 2012, 131/132: 29-36.
    [19] TIWARI B, MARUI H.Objective oriented multistage ring shear test for shear strength of landslide soil[J]. J Geotech Geoenviron Eng, 2004, 130(2): 217-222.
    [20] EID H T, RABIE K H, WIJEWICKREME D.Drained residual shear strength at effective normal stresses relevant to soil slope stability analyses[J]. Eng Geol, 2016, 204: 94-107.
    [21] SHIBASAKI T, MATSUURA S, et al.Temperature- dependent residual shear strength characteristics of smectite-bearing landslide soils[J]. J Geophys Res Soild Earth, 2017, 122: 1449-1469.
    [22] SKEMPTON A W.Fourth Rankine Lecture: long term stability of clay slopes[J]. Géotechnique, 1964, 14(2): 77-101.
    [23] KAMAI T.Monitoring the process of ground failure in repeated landslides and associated stability assessments[J]. Eng Geol, 1998, 50: 71-4.
    [24] CARRUBBA P, FABBRO M D.Laboratory investigation on reactivated residual strength[J]. J Geotech Geoenviron Eng, 2008, 134(3): 302-315.
    [25] DEEPAK R B, YATABE R, BHANDARY N P.Study of preexisting shear surfaces of reactivated landslides from a strength recovery perspective[J]. Journal of Asian Earth Sciences, 2013, 77: 243-253.
    [26] GIBO S, EGASHIRA K, OHTSUBO M, et al.Strength recovery from residual state in reactivated landslides[J]. Géotechnique, 2002, 52(9): 683-686.
    [27] BISHOP A W, GREEN G E, GARGA V K, et al.A new ring shear apparatus and its application to the measurement of residual strength[J]. Géotechnique, 1971, 21(4): 273-328.
    [28] EID H T, STARK T D, DOERFLER C K.Effect of shear displacement rate on internal shear strength of a reinforced geosynthetic clay liner[J]. Geosynthetics International, 2000, 3: 219-239.
    [29] 王顺, 项伟, 崔德山, 等. 不同环剪方式下滑带土残余强度试验研究[J]. 岩土力学, 2012, 33(10): 2967-2972.
    (WANG Shun, XIANG Wei, CUI De-shan, et al.Study of residual strength of slide zone soil under different ring-shear tests[J]. Rock and Soil Mechanics, 2012, 33(10): 2967-2972. (in Chinese))
  • 期刊类型引用(24)

    1. 陈琼,崔德山,张扬景皓,朱俊峰. 一种新型环剪仪的研制及其应用. 地质科技通报. 2025(01): 205-215 . 百度学术
    2. 张卫雄,杨校辉,丁保艳,朱文杰,任永忠. 甘肃舟曲江顶崖滑坡堆积层剪切特性与强度参数分析. 中国地质灾害与防治学报. 2025(01): 65-72 . 百度学术
    3. Yang Xue,Fasheng Miao,Yiping Wu,Linwei Li,Daniel Dias,Yang Tang. Probabilistic Assessment of Constitutive Model Parameters:Insight from a Statistical Damage Constitutive Model and a Simple Critical State Hypoplastic Model. Journal of Earth Science. 2025(02): 685-699 . 必应学术
    4. 张兆雷. 滑带土力学性能及抗滑桩支护斜坡稳定分析. 黑龙江交通科技. 2025(04): 6-10 . 百度学术
    5. 周葆春,王江伟,单丽霞,李颖,郎梦婷,孔令伟. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究. 岩土工程学报. 2024(06): 1325-1331 . 本站查看
    6. 鄢俊彪,孔令伟,李甜果,周振华. 膨胀土残余强度的变速率效应及工程启示. 岩土工程学报. 2024(07): 1445-1452 . 本站查看
    7. 方永柱. 库岸边坡滑坡带土体特性试验研究. 陕西水利. 2024(07): 196-198 . 百度学术
    8. 袁伟. 基于Midas对沿河滑坡的分析研究. 中国水运. 2024(08): 139-141 . 百度学术
    9. 袁伟. 基于Midas对沿河滑坡的分析研究. 中国水运. 2024(15): 139-141 . 百度学术
    10. 王家鑫,夏元友,王智德. 考虑滑面应变软化效应的边坡震后位移计算方法. 计算力学学报. 2024(06): 1029-1036 . 百度学术
    11. 杜毅,晏鄂川,蔡静森,高旭,柳万里. 折线型复合式滑坡渐进破坏稳定性状态的力学判别. 岩土工程学报. 2023(06): 1151-1161 . 本站查看
    12. 苗发盛,赵帆程,吴益平,孟佳佳. 基于渗透-环剪试验的三峡库区童家坪滑坡滑带土强度特性研究. 岩土工程学报. 2023(07): 1480-1489 . 本站查看
    13. 黄淙葆,代张音,高威挺,罗庆丽. 贵州公路旁边坡滑带土抗剪强度特性研究. 地质与资源. 2023(03): 366-374 . 百度学术
    14. 吴爽爽,胡新丽,孙少锐,魏继红. 间歇式滑坡变形力学机制与单体预警案例研究. 岩土力学. 2023(S1): 593-602 . 百度学术
    15. 夏婷,代张音,杨银凯,赵昆. 含水率对滑带土抗剪强度的影响. 矿业工程研究. 2023(04): 60-66 . 百度学术
    16. 赵帆程,苗发盛,吴益平,薛阳,孟佳佳. 不同环剪条件下三峡库区童家坪滑坡滑带土强度特性. 地质科技通报. 2022(02): 315-324 . 百度学术
    17. 周洪福,张卓婷,韦玉婷. 基于滑体自重效应的滑带土强度参数取值方法. 岩石力学与工程学报. 2022(05): 1045-1053 . 百度学术
    18. 唐雅婷,谭杰,李长冬,李炳辰,周文娟. 基于模型试验的动水驱动型顺层岩质滑坡启滑机制初探. 地质科技通报. 2022(06): 137-148 . 百度学术
    19. 李政洋,袁伟,蒙焕伟. 高洞滑坡基本特征及形成机制分析. 中国水运(下半月). 2022(12): 109-111 . 百度学术
    20. 付传林. 水库滑坡变形特征的数值分析. 水利科技与经济. 2022(12): 116-120 . 百度学术
    21. 李政洋,袁伟,蒙焕伟. 高洞滑坡基本特征及形成机制分析. 中国水运. 2022(24): 109-111 . 百度学术
    22. 任三绍,张永双,徐能雄,吴瑞安. 含砾滑带土残余强度与剪切面粗糙度的细观响应机制. 岩土工程学报. 2021(08): 1473-1482 . 本站查看
    23. 张晓奇,胡新丽,刘忠绪,刘畅,吴爽爽. 呷爬滑坡滑带土蠕变特性及其稳定性. 地质科技通报. 2020(06): 145-153 . 百度学术
    24. 张耀文,吴迪. 黏性土的残余强度及试验方法研究. 工程技术研究. 2019(24): 147-148+226 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  338
  • HTML全文浏览量:  10
  • PDF下载量:  294
  • 被引次数: 28
出版历程
  • 收稿日期:  2018-06-04
  • 发布日期:  2019-09-24

目录

    /

    返回文章
    返回