• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

基于颗粒物质热动力学理论的非饱和土热水力耦合模型研究

杨光昌, 白冰

杨光昌, 白冰. 基于颗粒物质热动力学理论的非饱和土热水力耦合模型研究[J]. 岩土工程学报, 2019, 41(9): 1688-1697. DOI: 10.11779/CJGE201909013
引用本文: 杨光昌, 白冰. 基于颗粒物质热动力学理论的非饱和土热水力耦合模型研究[J]. 岩土工程学报, 2019, 41(9): 1688-1697. DOI: 10.11779/CJGE201909013
YANG Guang-chang, BAI Bing. A thermo-hydro-mechanical coupled model for unsaturated soils based on thermodynamic theory of granular matter[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1688-1697. DOI: 10.11779/CJGE201909013
Citation: YANG Guang-chang, BAI Bing. A thermo-hydro-mechanical coupled model for unsaturated soils based on thermodynamic theory of granular matter[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1688-1697. DOI: 10.11779/CJGE201909013

基于颗粒物质热动力学理论的非饱和土热水力耦合模型研究  English Version

基金项目: 国家自然科学基金项目(51878035,51678043)
详细信息
    作者简介:

    杨光昌(1990— ),男,博士研究生,主要从事环境岩土工程等方面的科研。E-mail: ygc3ang@bjtu.edu.cn。

    通讯作者:

    白冰,E-mail:baibing66@263.net

A thermo-hydro-mechanical coupled model for unsaturated soils based on thermodynamic theory of granular matter

  • 摘要: 基于颗粒物质热动力学理论和混合物理论,结合改进的土水特征曲线(SWCC)模型,考虑温度和饱和度变化引发的颗粒层次能量耗散,提出了一个非饱和土的热水力耦合模型。该模型引入颗粒熵和颗粒温度的概念,通过构建热力学恒等式得出非饱和土非弹性变形的本构关系,并通过迁移系数和能量函数模型将非饱和土体的耗散机制与宏观的物理力学行为建立联系。基于该理论模型,研究了非饱和土的热水力耦合问题,通过模拟结果与试验数据的对比,证实了模型的有效性。模拟结果表明,模型具有描述非饱和土在不同温度和吸力下的固结和剪切特性以及非等温条件下的热体应变特性的能力。
    Abstract: Based on the thermodynamic theory of granular matter and the theory of mixtures, combined with the modified soil water characteristic curve (SWCC) model, considering the granular level energy dissipation caused by changes of temperature and saturation, a new thermo-hydro-mechanical coupled model for unsaturated soils is proposed. The model introduces the concepts of granular entropy and granular temperature. The constitutive relationship of non-elastic deformation can be obtained through the thermodynamic identity. The relationship between the dissipation mechanism of unsaturated soils and the macro-physical and mechanical behavior is established by using the migration coefficients and energy function model. Based on the theoretical model, the thermo-hydro-mechanical (THM) coupling behavior of unsaturated soils is studied. The validity of the model is verified by comparing the simulated results with the experimental data. The results show that the proposed model has the capability to describe the consolidation and shear behavior of unsaturated soils at different temperatures and suctions and the thermal volumetric strain changes under non-isothermal conditions.
  • [1] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272.
    (CHEN Zheng-han.On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese))
    [2] BAI B, RAO D Y, XU T, et al.SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface[J]. International Journal of Heat and Mass Transfer, 2018, 117: 517-526.
    [3] ALONSO E E, GENS A, JOSA A.A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430.
    [4] WHEELER S J, SIVAKUMAR V.An elasto-plastic critical state framework for unsaturated soil[J]. Géotechnique, 1995, 45(1): 35-53.
    [5] 赵成刚, 刘艳. 连续孔隙介质土力学及其在非饱和土本构关系中的应用[J]. 岩土工程学报, 2009, 31(9): 1324-1335.
    (ZHAO Cheng-gang, LIU Yan.Continuum porous medium soil mechanics and its application in constitutive relationship of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1324-1335. (in Chinese))
    [6] KHALILI N, LORET B.An elasto-plastic model for non-isothermal analysis of flow and deformation in unsaturated porous media: formulation[J]. International Journal of Solids and Structures, 2001, 38(46/47): 8305-30.
    [7] 姚仰平, 牛雷, 崔文杰, 等. 超固结非饱和土的本构关系[J]. 岩土工程学报, 2011, 33(6): 833-839.
    (YAO Yang-ping, NIU Lei, CUI Wen-jie, et al.UH model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 833-839. (in Chinese) )
    [8] GALLIPOLI D, GENS A, SHARMA R, et al.An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behavior[J]. Géotechnique, 2003, 53(1): 123-135.
    [9] SHENG D C, ZHOU A N.Coupling hydraulic with mechanical models for unsaturated soils[J]. Canadian Geotechnical Journal, 2011, 48(5): 826-840.
    [10] 蔡国庆, 赵成刚, 刘艳, 等. 考虑温度影响的非饱和土变形特性[J]. 科学通报, 2011, 56(18): 1487-1496.
    (CAI GUO-qing, ZHAO Cheng-gang, LIU Yan, et al.Volume change behavior of unsaturated soils under non-isothermal conditions[J]. Chinese Science Bulletin, 2011, 56(18): 1487-1496. (in Chinese))
    [11] DUMONT M, TAIBI S, FLEUREAU J M, et al.A thermohydro-mechanical model for unsaturated soils based on the effective stress concept[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(12): 1299-1317.
    [12] MASIN D, KHALILI N.A thermo-mechanical model for variably saturated soils based on hypoplasticity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(12): 1461-1485.
    [13] SULEM J, LAZAR P, Vardoulakis I.Thermo-poro- mechanical properties of clayey gouge and application to rapid fault shearing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(3): 523-540.
    [14] WANG X, SHAO H, HESSER J, et.al. Numerical analysis of thermal impact on hydro-mechanical properties of clay[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2004, 6(5): 405-416.
    [15] ZHOU A N, SHENG D C, LI J.Modelling water retention and volume change behaviours of unsaturated soils in non-isothermal conditions[J]. Computers and Geotechnics 2014, 55: 1-13.
    [16] SANCHEZ M, GENS A, VILLAR M V, et al.Fully coupled thermo-hydro-mechanical double-porosity formulation for unsaturated soils[J]. International Journal of Geomechanics, 2016, 16(6): 1-38.
    [17] ABED A A, SOLOWSKI W T.A study on how to couple thermo-hydro-mechanical behaviour of unsaturated soils: Physical equations, numerical implementation and examples[J]. Computers and Geotechnics, 2017, 92: 132-155.
    [18] BELLIA Z, GHEMBAZA M S, BELAL T.A thermo- hydro-mechanical model of unsaturated soils based on bounding surface plasticity[J]. Computers and Geotechnics, 2015, 69: 58-69.
    [19] HOULSBY G T, PUZRIN A M.A thermomechanical framework for constitutive models for rate-independent dissipative materials[J]. International Journal of Plasticity, 2000, 16(9): 1017-1047.
    [20] LI X S.Thermodynamics-based constitutive framework for unsaturated soils: 1 theory[J]. Géotechnique, 2007, 57(5): 411-422.
    [21] TEMMEN H, PLEINER H, LIU M, et al.Convective nonlinearity in non-Newtonian fluids[J]. Physical Review Letters, 2000, 84: 3228-3231.
    [22] JIANG Y M, LIU M.Granular solid hydrodynamics[J]. Granular Matter, 2009, 11(3): 139-156.
    [23] DE GENNES P G. Granular matter: a tentative view[J]. Reviews of Modern Physics, 1999, 71(2): 374-382.
    [24] 张志超, 程晓辉. 饱和土非等温固结和不排水剪切的热力学本构模型[J]. 岩土工程学报, 2013, 35(7): 1297-1306.
    (ZHANG Zhi-chao, CHENG Xiao-hui.Thermodynamic constitutive model for non-isothermal consolidation and undrained shear behaviors of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1297-1306. (in Chinese))
    [25] ZHANG Z C, CHENG X H.A thermo-mechanical coupled constitutive model for clay based on extended granular solid hydrodynamics[J]. Computers and Geotechnics, 2016, 80: 373-382.
    [26] ZHANG Z C.A thermodynamics-based theory for the thermo-poro-mechanical modeling of saturated clay[J]. International Journal of Plasticity, 2017, 90: 164-185.
    [27] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学[J]. 物理学报, 2013, 62(20): 284-292.
    (JIANG Yi-min, LIU Mario.Hydrodynamic theory of grains, water and air[J]. Acta Physica Sinica, 2013, 62(20): 284-292. (in Chinese))
    [28] 孙其诚, 厚美瑛, 金峰, 等. 颗粒物质物理与力学[M]. 北京: 科学出版社, 2011.
    (SUN Qi-cheng, HOU Mei-ying, JIN Feng, et al.Physics and mechanics of granular matter[M]. Beijing: Science Press, 2011. (in Chinese))
    [29] JIANG Y M, LIU M.Applying GSH to a wide range of experiments in granular media[J]. The European Physical Journal E, 2015, 38(15): 1-27.
    [30] ONSAGER L.Reciprocal relations in irreversible processes[J]. Physical Review, 1931, 37(2): 405-426.
    [31] DE GROOT S R, MAZUR P. Non-equilibrium thermodynamics[M]. New York: Dover Publications, 1984.
    [32] 钱祖文. 颗粒介质中的黏滞系数[J]. 物理学报, 2012, 61(13): 1-4.
    (QIAN Zu-wen.Viscosity coefficient in granular medium[J]. Acta Physica Sinica, 2012, 61(13): 1-4. (in Chinese))
    [33] LU N, WILLIAM J.非饱和土力学[M]. 北京: 高等教育出版社, 2012.
    (NING L, WILLIAM J.Unsaturated soil mechanics[M]. Beijing: Higher Education Press, 2004. (in Chinese))
    [34] HOULSBY G T, AMOROSI A, ROJAS E.Elastic moduli of soils dependent on pressure: a hyperelastic formulation[J]. Géotechnique, 2005, 55(5): 383-392.
    [35] LANDAU L D, LIFSHITZ E M.Theory of elasticity[M]. 3rd ed. Oxford: Pergamon Press, 1986.
    [36] SIVAKUMAR V.A critical state framework for unsaturated soil[D]. Sheffield: University of Sheffield, 1993.
    [37] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44: 892-898.
    [38] TARANTINO A.A water retention model for deformable soils[J]. Géotechnique, 2009, 59(9): 751-762.
    [39] GRANT S A, SALEHZADEH A.Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions[J]. Water Resources Research, 1996, 32(2): 261-270.
    [40] 朱启银. 软黏土的流变特性及流变参数统一性研究[D]. 上海: 上海交通大学, 2014.
    (ZHU Qi-yin.Time-dependent behavior and uniqueness of its key parameters for soft clays[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese))
    [41] TANG A M, CUI Y J, BARNEL N.Thermo-mechanical behaviour of a compacted swelling clay[J]. Géotechnique, 2008, 58(1): 45-54.
    [42] TANG, A M, CUI Y J.Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay[J]. Canadian Geotechnical Journal, 2005, 42(1): 287-296.
    [43] SULTAN N, DELAGE P, CUI Y J.Temperature effects on the volume change behaviour of boom clay[J]. Engineering Geology, 2002, 64(2/3): 135-145.
    [44] BAI B, SHI X Y.Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading[J]. Geomechanics and Engineering, 2017, 12(4): 707-721.
    [45] 杨光昌, 白冰. 考虑超固结效应的不同温度路径下饱和粉质黏土的热固结[J]. 岩土力学, 2018, 39(1): 71-77.
    (YANG Guang-chang, BAI bing. Thermal consolidation of saturated silty clay considering overconsolidation effect with different heating-cooling paths[J]. Rock and Soil Mechanics, 2018, 39(1): 71-77. (in Chinese))
    [46] UCHAIPICHAT, A, KHALILI, N.Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt[J]. Géotechnique, 2009, 59(4): 339-353.
  • 期刊类型引用(9)

    1. 李建东,王旭,张延杰,蒋代军,刘德仁,胡渊. 球形蒸汽源增湿非饱和黄土水热运移规律试验研究. 岩土工程学报. 2022(04): 687-695 . 本站查看
    2. 李军,陈文涛,陈栋梁. 非饱和土体力学性质及其在采矿工程中的应用研究. 能源与环保. 2022(06): 290-295 . 百度学术
    3. 韩逸冬,邓岳保,曹光形,朱瑶宏,姚燕明. 考虑循环变温的软土热固结模型. 岩土力学. 2022(10): 2768-2776 . 百度学术
    4. 孟庆龙,刘明华,杨光昌. 柱锤冲扩桩+CFG桩联合处置深厚垃圾杂填土地基的效果分析. 水利与建筑工程学报. 2021(03): 31-37 . 百度学术
    5. 陈勇,严可翔,苏剑,王世梅,谭建民. 湿–载–热对粉质黏土持水性能的影响特征及预测模型. 工程科学与技术. 2021(04): 45-52 . 百度学术
    6. 胡小荣,蔡晓锋,瞿鹏. 基于坐标平移法的正常固结非饱和土三剪弹塑性本构模型. 应用数学和力学. 2021(08): 813-831 . 百度学术
    7. 杨光昌,白冰,刘洋,陈佩佩. 描述饱和砂土剪切特性的一个热力学本构模型. 哈尔滨工业大学学报. 2021(11): 93-100 . 百度学术
    8. 王国辉,李友东,刘双晨,王庆军,陈军红. 高耸重型储槽群桩筏基础变形监测和数值模拟研究. 水利与建筑工程学报. 2020(04): 215-220+256 . 百度学术
    9. 费康,周莹,付长郓. 温度对饱和黏性土剪切特性影响的试验研究. 岩土工程学报. 2020(09): 1679-1686 . 本站查看

    其他类型引用(12)

计量
  • 文章访问数:  278
  • HTML全文浏览量:  3
  • PDF下载量:  319
  • 被引次数: 21
出版历程
  • 收稿日期:  2018-06-04
  • 发布日期:  2019-09-24

目录

    /

    返回文章
    返回