• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

考虑承压含水层间越流的地下水回灌现场试验研究

郑刚, 曹剑然, 程雪松, 哈达

郑刚, 曹剑然, 程雪松, 哈达. 考虑承压含水层间越流的地下水回灌现场试验研究[J]. 岩土工程学报, 2019, 41(9): 1609-1618. DOI: 10.11779/CJGE201909004
引用本文: 郑刚, 曹剑然, 程雪松, 哈达. 考虑承压含水层间越流的地下水回灌现场试验研究[J]. 岩土工程学报, 2019, 41(9): 1609-1618. DOI: 10.11779/CJGE201909004
ZHENG Gang, CAO Jian-ran, CHENG Xue-song, HA Da. Field tests on groundwater recharge considering leakage between semiconfined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1609-1618. DOI: 10.11779/CJGE201909004
Citation: ZHENG Gang, CAO Jian-ran, CHENG Xue-song, HA Da. Field tests on groundwater recharge considering leakage between semiconfined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1609-1618. DOI: 10.11779/CJGE201909004

考虑承压含水层间越流的地下水回灌现场试验研究  English Version

基金项目: 国家重点研发计划课题(2016YFC0802008); 天津市自然科学基金项目(18JCQNJC07900)
详细信息
    作者简介:

    郑 刚(1967— ),男,博士,教授,博士生导师,从事土力学及岩土工程的教学与科研工作。E-mail: zhenggang1967@163.com。

    通讯作者:

    程雪松,E-mail:cheng_xuesong@163.com

Field tests on groundwater recharge considering leakage between semiconfined aquifers

  • 摘要: 当场地存在多层层间有一定水力联系的承压含水层时,基坑内降水可引发基坑止水帷幕墙底以下的承压含水层的水头下降,并相应引起坑外多个含水层水位降低,若对所有层进行回灌则将导致成本大幅提高,此时可对某一层回灌,通过越流对其他含水层进行水位补给。通过在天津地铁某车站基坑所在场地开展抽水试验、单井回灌试验、先抽后灌试验对基坑内外的水力联系、不同含水层间的水力联系和隔层回灌的效果进行了研究。结果表明,由于各含水层间之间有一定水力联系导致竖向越流补给较强,基坑内疏干降水可引起坑外承压含水层水头下降并引起坑外地层沉降。对基坑外第Ⅰ微承压含水层进行回灌可有效对其上部潜水层和下部第Ⅱ-1承压层的水头起到抬升作用,通过隔层回灌从而控制其水位下降导致的坑外沉降。对第Ⅰ承压含水层进行回灌对基坑外第Ⅱ-2承压层水位抬升也有一定的作用,但是尚不足以使其因基坑内降水引起的坑外水位下降值完全恢复,建议结合设置此层的备用回灌井以控制其水位下降。
    Abstract: The dewatering of an excavation will cause water-level drawdown in multiple aquifers outside the excavation in the presence of multiple confined aquifers where multiple hydraulic connections exist. Recharge of all layers will result in a significant increase in cost, so one layer can be recharged and the other aquifers can be recharged by leakage. The effects of dewatering tests, single-well recharge tests, and the dewatering-recharge tests on the hydraulic connections inside and outside the excavation, the hydraulic connections between different aquifers, and the effects of interlayer recharge are studied at the site of the excavation at a subway station. Due to the significant hydraulic connection between the aquifers, the vertical cross-flow recharge is strong, and the dewatering in the excavation can cause the head of the confined aquifer to fall and the subsidence outside the excavation. Recharge of the semiconfined aquifer Ⅰ outside the excavation can effectively raise the head of the upper phreatic layer and the lower aquifer II-1, and the subsidence caused by the water-level drawdown is controlled by the interlayer recharge. For the aquifer II-2, recharge of the aquifer Ⅰ also has a certain effect on the water level, but it is still not possible to fully restore the water level. It is recommended to combine the backup recharge wells in this aquifer to control the water-level drawdown.
  • [1] WU Y X, LIU H M, SHEN J S, et al.Geological and hydrogeological environment in Tianjin with potential geohazards and groundwater control during excavation[J]. Environmental Earth Sciences, 2018, 77(10): 392.
    [2] 缪俊发, 吴林高, 王璋群. 大型深井点降水引起地面沉降的研究[J].岩土工程学报, 1991, 13(3): 60-64.
    (MIAO Jun-fa, WU Lin-gao, WANG Zhang-qun.Study on land subsidence caused by large deep well point precipitation[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(3): 60-64. (in Chinese))
    [3] 龚晓南, 张杰. 承压水降压引起的上覆土层沉降分析[J]. 岩土工程学报, 2011, 33(1): 145-149.
    (GONG Xiao-nan, ZHANG Jie.Settlement of overlaying soil caused by decompression of confined water[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 145-149. (in Chinese))
    [4] 郑刚, 曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35(12): 2153-2163.
    (ZHENG Gang, ZENG Chao-feng.Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153-2163. (in Chinese))
    [5] ZHENG G, ZENG C F, DIAO Y, et al.Test and numerical research on wall deflections induced by pre-excavation dewatering[J]. Computers and Geotechnics, 2014, 62: 244-256.
    [6] 黄应超, 徐杨青. 深基坑降水与回灌过程的数值模拟分析[J]. 岩土工程学报, 2014, 36(增刊2): 299-303.
    (HUANG Ying-chao, XU Yang-qing.Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 299-303. (in Chinese))
    [7] 王国富, 王倩, 路林海, 等. 济南轨道交通某深基坑降水与回灌数值分析[J]. 地下空间与工程学报, 2017, 13(5): 1280-1288.
    (WANG Guo-fu, WANG Qian, LU Lin-hai, et al.Numerical analysis on dewatering and recharging of a deep foundation pit of Jinan railway[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(5): 1280-1288. (in Chinese))
    [8] ZHANG Y Q, LI M G, WANG J H, et al.Field tests of pumping-recharge technology for deep confined aquifers and its application to a deep excavation[J]. Engineering Geology, 2017, 228: 249-259.
    [9] 卢士涛, 许涛涛, 李亮亮, 等. 承压砂层深基坑降水和回灌试验的应用研究[J]. 地下空间与工程学报, 2017, 13(增刊2): 658-662.
    (LU Shi-tao, XU Tao-tao, LI Liang-liang, et al.Applied study on pumping and recharge tests of deep foundation excavation in bearing sand layer area[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(S2): 658-662. (in Chinese))
    [10] HUANG Y, YANG Y, LI J.Numerical simulation of artificial groundwater recharge for controlling land subsidence[J]. KSCE Journal of Civil Engineering, 2015, 19(2): 418-426.
    [11] WANG J, WU Y, ZHANG X, et al.Field experiments and numerical simulations of confined aquifer response to multi-cycle recharge-recovery process through a well[J]. Journal of hydrology, 2012, 464: 328-343.
    [12] 郑刚, 曹剑然, 程雪松, 等. 天津第二粉土粉砂微承压含水层回灌试验研究[J]. 岩土工程学报, 2018, 40(4): 592-601.
    (ZHENG Gang, CAO Jian-ran, CHENG Xue-song, et al.Experimental study on artificial recharge of second Tianjin silt and silty sand micro-confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 592-601. (in Chinese))
    [13] 牛磊, 张春福, 孟祥玉, 等. 天津地区浅层地下水回灌试验分析[J]. 施工技术, 2016, 45(19): 46-48.
    (NIU Lei, ZHANG Chun-fu, MENG Xiang-yu, et al.Analysis of shallow groundwater recharge test in Tianjin area[J]. Construction Technology, 2016, 45(19): 46-48. (in Chinese))
    [14] 何国峰, 张云, 孙铁, 等. 周期性开采和回灌条件下浅层地下水位变化特征研究——以天津滨海新区为例[J].水文地质工程地质, 2016, 43(6): 27-34.
    (HE Guo-feng, ZHANG Yun, SUN Tie, et al.Variation characteristics of shallow groundwater levels under periodic pumping and recharge test: examplified by Tianjin Binhai New Area[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 27-34. (in Chinese))
    [15] 郑刚, 曾超峰, 刘畅, 等. 天津首例基坑工程承压含水层回灌实测研究[J]. 岩土工程学报, 2013, 35(增刊2): 491-495.
    (ZHENG Gang, ZENG Chao-feng, LIU Chang, et al.Field observation of artificial recharge of confined water in first excavation case in Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 491-495. (in Chinese))
    [16] 曾超峰. 工程降水引起基坑及土体变形机理、规律及控制策略研究[D]. 天津: 天津大学, 2014.
    (ZENG Chao-feng.Study on deformation mechanism, behavior and control strategy of excavation and ground under dewatering[D]. Tianjin: Tianjin University, 2014. (in Chinese))
    [17] SHEN S L, WU Y X, XU Y S, et al.Evaluation of hydraulic parameters from pumping tests in multi-aquifers with vertical leakage in Tianjin[J]. Computers and Geotechnics, 2015, 68: 196-207.
    [18] 叶淑君, 薛禹群. 应用沉降和水位数据计算上海地区弱透水层的参数[J]. 岩土力学, 2005, 26(2): 256-260.
    (YE Shu-jun, XUE Yu-qun.Stress-strain analysis for storage coefficients and vertical hydraulic conductivities of aquitards in Shanghai area[J]. Rock and Soil Mechanics, 2005, 26(2): 256-260. (in Chinese))
    [19] JACOB B.Hydraulics of groundwater[M]. New York: MacGraw-Hill, 1979.
    [20] 曹洪, 张挺, 陈小丹. 多层强透水地基渗流计算的应用研究[J]. 岩石力学与工程学报, 2003, 22(7): 1185-1190.
    (CAO Hong, ZHANG Ting, CHEN Xiao-dan.Application of seepage calculation for multi-layered strong permeable soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7): 1185-1190. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 发布日期:  2019-09-24

目录

    /

    返回文章
    返回