• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

典型深海软黏土全流动循环软化特性与微观结构探究

任玉宾, 王胤, 杨庆

任玉宾, 王胤, 杨庆. 典型深海软黏土全流动循环软化特性与微观结构探究[J]. 岩土工程学报, 2019, 41(8): 1562-1568. DOI: 10.11779/CJGE201908022
引用本文: 任玉宾, 王胤, 杨庆. 典型深海软黏土全流动循环软化特性与微观结构探究[J]. 岩土工程学报, 2019, 41(8): 1562-1568. DOI: 10.11779/CJGE201908022
REN Yu-bin, WANG Yin, YANG Qing. Full-flow cyclic degradation and micro-structure of representative deep-sea soft clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1562-1568. DOI: 10.11779/CJGE201908022
Citation: REN Yu-bin, WANG Yin, YANG Qing. Full-flow cyclic degradation and micro-structure of representative deep-sea soft clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1562-1568. DOI: 10.11779/CJGE201908022

典型深海软黏土全流动循环软化特性与微观结构探究  English Version

基金项目: 国家自然科学基金项目(51639002,41572252,51711530229); 中央高校基本科研业务费科研专题项目(DUT17LK37)
详细信息
    作者简介:

    任玉宾(1990— ),男,博士研究生,主要从事海洋土力学性质和微观结构等方面的科研工作。E-mail: renyubin@mail.dlut.edu.cn。

    通讯作者:

    杨庆,E-mail:qyang@dlut.edu.cn

  • 中图分类号: TU43

Full-flow cyclic degradation and micro-structure of representative deep-sea soft clay

  • 摘要: 深海软黏土具有不同于陆相或近海软黏土的岩土工程性质。针对取自中国南海西部深水区5个典型站位的海床软黏土,采用一种改进的全流动贯入装置对其强度特征进行测试,并结合深海软黏土特殊的微观结构和生物硅矿物,对其循环软化特性进行分析和探讨。研究结果表明:南海西部深海软黏土普遍具有高含水率、高液性指数、高活性值、低不排水抗剪强度和高灵敏度等特点,极慢的沉积速率和稳定的沉积环境是深海软黏土具有高灵敏度的主要原因。全流动循环软化过程中土体结构的变化主要体现在絮凝体的破坏和孔隙结构的改变两个方面。特殊的生物硅颗粒在循环作用下会发生破碎,导致内部孔隙水释放,从而加剧了土体循环软化的程度。
    Abstract: The geotechnical properties of deep-sea soft clay are quite different from those of terrestrial or offshore clay. For the representative deep-sea soft clay collected from the western region of South China Sea, an improved full-flow penetration device is used to measure its strength characteristics. Combined with (Focusing on) the special micro-structure and bio-silica minerals, the cyclic degradation characteristics are analyzed and discussed. The results show that the deep-sea soft clay in the western region of South China Sea generally has the characteristics of high water content, high liquidity index, high activity, low undrained shear strength and high sensitivity. The extremely slow deposition rate and stable deposition environment are the main reasons for the high sensitivity of deep-sea soft clay. The change of micro-structure of soils during the full-flow cyclic degradation process is mainly caused by the damage of flocculation and the change of pore structure. The bio-silica particles may break under the cyclic penetration, leading to the release of the internal pore water, which will aggravate the degree of degradation.
  • [1] 郭绍曾, 刘润. 静力触探测试技术在海洋工程中的应用[J]. 岩土工程学报, 2015, 37(增刊1): 207-211.
    (GUO Shao-zeng, LIU Run.Application of cone penetration test in offshore engineering[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 207-211. (in Chinese))
    [2] 郭小青, 朱斌, 刘晋超, 等. 珠江口海洋软土不排水抗剪强度及循环弱化特性试验研究[J]. 岩土力学, 2016, 37(4): 1005-1012.
    (GUO Xiao-qing, ZHU Bin, LIU Jin-chao, et al.Experimental study of undrained shear strength and cyclic degradation behaviors of marine clay in Pearl River Estuary[J]. Rock and Soil Mechanics, 2016, 37(4): 1005-1012. (in Chinese))
    [3] 彭鹏, 蔡国军, 刘松玉, 等. T型全流触探仪机理分析及海洋工程应用综述[J]. 岩土工程学报, 2017, 39(增刊1): 151-155.
    (PENG Peng, CAI Guo-jun, LIU Song-yu, et al.Review of T-bar full-flow penetration testing in offshore engineering[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 151-155. (in Chinese))
    [4] 年廷凯, 范宁, 焦厚滨, 等. 南海北部陆坡软黏土全流动强度试验研究[J]. 岩土工程学报, 2018, 40(4): 602-611.
    (NIAN Ting-kai, FAN Ning, JIAO Hou-bin, et al.Full-flow strength tests on the soft clay in the northern slope of the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 602-611. (in Chinese))
    [5] 吴鸿云, 陈新明, 高宇清, 等. 西矿区深海稀软底质剪切强度和贯入阻力原位测试[J]. 中南大学学报(自然科学版), 2010, 41(5): 1801-1806.
    (WU Hong-yun, CHEN Xin-ming, GAO Yu-qing, et al.In-situ shearing strength and penetration resistance testing of soft seabed sediments in western mining area[J]. Journal of Central South University (Science and Technology), 2010, 41(5): 1801-1806. (in Chinese))
    [6] 马雯波, 饶秋华, 吴鸿云, 等. 深海稀软底质土宏观性能与显微结构分析[J]. 岩土力学, 2014, 35(6): 1641-1646.
    (MA Wen-bo, RAO Qiu-hua, WU Hong-yun, et al.Macroscopic properties and microstructure analyses of deep-sea sediment[J]. Rock and Soil Mechanics, 2014, 35(6): 1641-1646. (in Chinese))
    [7] 任玉宾, 朱兴运, 周令新, 等. 南海西部海盆深海沉积物物理性质初探[J]. 中国海洋大学学报(自然科学版), 2017, 47(10): 14-20.
    (REN Yu-bin, ZHU Xing-yun, ZHOU Ling-xin, et al.Preliminary study on physical properties of deep-sea sediments in the western basin of South China Sea[J]. Periodical of Ocean University of China (Science and Technology), 2017, 47(10): 14-20. (in Chinese))
    [8] 范宁, 赵维, 年廷凯, 等. 一种测试海底泥流强度的新型全流动贯入仪[J]. 上海交通大学学报, 2017, 51(4): 456-461.
    (FAN Ning, ZHAO Wei, NIAN Ting-kai, et al.A new full-flow penetrometer for strength test of submarine mud flow[J]. Journal of Shanghai Jiao Tong University, 2017, 51(4): 456-461. (in Chinese) )
    [9] DEJONG J, YAFRATE N, DEGROOT D, et al.Recommended practice for full-flow penetrometer testing and analysis[J]. Geotechnical Testing Journal, 2010, 33(2): 137-149.
    [10] LUNNE T, BERRE T, STRANDVIK S.Sample disturbance effects in soft low plastic Norwegian clay[C]// Proceedings of Recent Developments in Soil and Pavement Mechanics. Rio de Janeiro, Brazil, 1997: 81-102.
    [11] LUNNE T, ANDERSEN K H, LOW H E, et al.Guidelines for offshore in situ testing and interpretation in deepwater[J]. Canadian Geotechnical Journal, 2011, 48(4): 543-556.
    [12] SKEMPTION A W, NORTHEY R D.The sensitivity of clays[J]. Géotechnique, 2015, 3(1): 30-53.
    [13] RANDOLPH M F, HAN L, ZHOU H.In situ testing for design of pipeline and anchoring systems[C]// Proceedings of the 6th International Offshore Site Investigation and Geotechnics Conference: Confronting New Challenges and Sharing Knowledge. London, 2007: 177-186.
    [14] YIN Z Y, HATTAB M, HICHER P Y.Multiscale modeling of a sensitive marine clay[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2011, 35(15): 1682-1702.
    [15] HAMMAD T, FLEUREAU J M, HATTAB M, et al.Behaviour of a sensitive marine sediment: microstructural investigation[J]. Géotechnique, 2013, 63(1): 71-84.
    [16] NOORANY I.Classification of marine sediments[J]. Journal of Geotechnical Engineering, 1989, 115(1): 23-37.
    [17] WIEMER G, KOPF A.Influence of diatom microfossils on sediment shear strength and slope stability[J]. Geochemistry Geophysics Geosystems, 2017, 18: 333-345.
    [18] SHIWAKOTI D R, LOCAT J.Influences of diatom microfossils on engineering properties of soils[J]. Soils and Foundations, 2002, 42(3): 1-17.
    [19] LOCAT J, TANAKA H.A new class of soils: fossiliferous soils?[C]// Proceedings of the Fifteenth International Conference on Soil Mechanics and Geotechnical Engineering. Istanbul, 2001: 2295-2300.
    [20] MORTLOCK R A, FROELICH P N.A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426.
    [21] WIEMER G, MOERNAUT J, STARK N, et al.The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile[J]. International Journal of Earth Sciences, 2015, 104(5): 1439-1457.
  • 期刊类型引用(27)

    1. 冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 . 百度学术
    2. 胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 . 百度学术
    3. 唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 . 百度学术
    4. 刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 . 百度学术
    5. 喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 . 百度学术
    6. 张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 . 本站查看
    7. 刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 . 百度学术
    8. 程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 . 百度学术
    9. 刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 . 百度学术
    10. 张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 . 百度学术
    11. 薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 . 本站查看
    12. 刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 . 百度学术
    13. 刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 . 百度学术
    14. 方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 . 百度学术
    15. 蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 . 百度学术
    16. 赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 . 本站查看
    17. 马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 . 百度学术
    18. 刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 . 百度学术
    19. 马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 . 百度学术
    20. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 . 百度学术
    21. 关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 . 百度学术
    22. 孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 . 百度学术
    23. 邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 . 百度学术
    24. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 . 百度学术
    25. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 . 百度学术
    26. 张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 . 本站查看
    27. 陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 . 百度学术

    其他类型引用(47)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 74
出版历程
  • 收稿日期:  2018-07-12
  • 发布日期:  2019-08-24

目录

    /

    返回文章
    返回