• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

刚柔混合型大型真三轴仪研制与验证

邵生俊, 王永鑫

邵生俊, 王永鑫. 刚柔混合型大型真三轴仪研制与验证[J]. 岩土工程学报, 2019, 41(8): 1418-1426. DOI: 10.11779/CJGE201908005
引用本文: 邵生俊, 王永鑫. 刚柔混合型大型真三轴仪研制与验证[J]. 岩土工程学报, 2019, 41(8): 1418-1426. DOI: 10.11779/CJGE201908005
SHAO Sheng-Jun, WANG Yong-xin. Development and verification of large-scale true triaxial apparatus with rigid-flexible-flexible loading boundary mechanism[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1418-1426. DOI: 10.11779/CJGE201908005
Citation: SHAO Sheng-Jun, WANG Yong-xin. Development and verification of large-scale true triaxial apparatus with rigid-flexible-flexible loading boundary mechanism[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1418-1426. DOI: 10.11779/CJGE201908005

刚柔混合型大型真三轴仪研制与验证  English Version

基金项目: 国家自然科学基金项目(41272320,11572245)
详细信息
    作者简介:

    邵生俊(1964— ),男,甘肃武威人,教授,博士生导师,从事黄土力学、黄土动力学等的研究工作。E-mail: sjshao@xaut.edu.cn。

  • 中图分类号: TU413

Development and verification of large-scale true triaxial apparatus with rigid-flexible-flexible loading boundary mechanism

  • 摘要: 真三轴仪是研究三维主应力作用下土的变形强度变化规律的关键设备,同时也是岩土力学理论研究的试验仪。在西安理工大学已经开发的竖向刚性、水平面内正交两向柔性真三轴加载机构的基础上,将自主研发的试样尺寸分别为70 mm×70 mm×70 mm和70 mm×70 mm×140 mm小型真三轴仪进一步开发为上、下两端伺服控制同步加载的300 mm×300 mm×600 mm大型真三轴仪。该真三轴仪包括压力室主机架,竖向主应力加载伺服控制液压油源,水平面内主应力加载伺服控制液压体变控制器,试样孔隙水压力伺服控制液压控制器,以及伺服控制和信号采集控制系统。压力室加载机构具有沿竖向轴水平面内转动、径向滚动和液压驱动伸缩运动的隔板,有效地隔离了相邻柔性液压囊;具有上下端对称变形的液压缸加载刚性顶板和底座和侧面对称作用分布压力特征。真三轴仪研制中分别采用特殊构造的乳胶膜和装样模以及轴-板滚动结构和PID闭合控制优化算法,解决了试样尺寸增大带来的试样制备和安装、试验操作、边界影响等问题,水平面内正交两向柔性加载腔互相干扰的问题,以及自动控制系统的稳定性问题。最后利用大型真三轴仪对重塑黄土进行了等b试验验证,其应力-应变特性、抗剪强度特性得到了一致的结果。
    Abstract: The true triaxial apparatus is the key equipment to study the variation laws of the deformation strength of soils under the action of three-dimensional principal stress. It is also a test instrument for theoretical study of geotechnical mechanics. On the basis of vertical rigid and horizontal orthogonal two-direction flexible triaxis loading equipment developed by Xi'an University of Technology, the self-developed small true triaxis instruments with sample sizes of 70 mm×70 mm×70 mm and 70 mm×70 mm×140 mm are further developed into a large one with 300 mm×300 mm×600 mm with both upper and lower servo-controlled synchronous loading. The true triaxis instrument includes the main frame of the pressure chamber, vertical main stress loading servo-control hydraulic oil source, main stress loading servo-control hydraulic variable controller in the horizontal plane, sample pore water pressure servo-control hydraulic controller, and the servo-control and signal acquisition and control system. The loading equipment of the pressure chamber has a baffle with horizontal rotation along the vertical axis, radial rolling and expansion movement under hydraulic driving, which effectively separates the adjacent flexible hydraulic bag. In the development of the true triaxis instrument, special structure latex film and sample mold, axial plate rolling structure and PID-closed control optimization algorithm are used to solve the problem of sample preparation and installation, test operation, boundary influence and so on. The problems of the interference of the orthogonal two-direction flexible loading cavity in horizontal plane as well as the stability of the dynamic control system are solved. Finally, the large-scale true triaxis apparatus is used to verify the tests on remolded loess under the same value of b. The stress-strain characteristics and shear strength of the remolded loess are consistent.
  • [1] 殷宗泽, 朱俊高. 真三轴仪的改进[C]// 第一届全国岩土本构理论研讨会论文集. 北京, 2008.
    (YIN Zong-ze, ZHU Jun-gao.Improvement of true triaxial apparatus[C]// Proceedings of 1st National Conference on Geotechnical Constitutive Theory. Beijing, 2008. (in Chinese))
    [2] 俞茂宏, 昝月稳, 范文, 等. 20世纪岩石强度理论的发展——纪念Mohr-Coulomb强度理论100周年[J]. 岩石力学与工程学报, 2000, 19(5): 545-550.
    (YU Mao-hong, ZAN Yue-wen, FAN Wen, et al.Advances in strength theory of rock in 20 century: 100 years in memory of the Mohr-Coulomb strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5): 545-550. (in Chinese))
    [3] KJELLMAN W.Report on an apparatus for consummate investigation of the mechanical properties[C]// Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering. Cambridge, 1936.
    [4] HAMBLEY E C.A new true triaxial apparatus[J]. Géotechnique, 1969, 19(2): 307-309.
    [5] GREEN G E.Strength and deformation of sand measured in an independent stress control cell[C]// Proceedings of the Roscoe Memorial Symposium. London, 1971.
    [6] 邵生俊, 罗爱忠, 邓国华, 等. 一种新型真三轴仪的研制与开发[J]. 岩土工程学报, 2009, 31(8): 1172-1179.
    (SHAO Sheng-jun, LUO Ai-zhong, DENG Guo-hua, et al.Development of a new true tri-axial apparatus[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1172-1179. (in Chinese))
    [7] 邵生俊, 许萍, 邵帅, 等. 一室四腔刚-柔加载机构真三轴仪的改进与强度试验——西安理工大学真三轴仪[J]. 岩土工程学报, 2017, 39(9): 1575-1582.
    (SHAO Sheng-jun, XU Ping, SHAO Shuai, et al.Improvement and strength testing of true tri-axial apparatus with one chamber and four cells and rigid-flexible-flexible loading boundary mechanism: true triaxial apparatus developed in Xi'an University of Technology[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1575-1582. (in Chinese))
    [8] SHAO S, WANG Q, LUO A, et al.True triaxial apparatus with rigid-flexible-flexible boundary and remolded loess testing[J]. Journal of Testing and Evaluation, 2017, 45(3): 1-10.
    [9] PRASHANT A, PENUMADU D.Effect of intermediate principal stress on overconsolidated kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(3): 284-292.
    [10] 叶冠林, 盛佳韧, 武朝军, 等. 自动控制真三轴仪的研制及验证[J]. 岩土工程学报, 2011, 33(3): 380-385.
    (YE Guan-lin, SHENG Jia-ren, WU Chao-jun, et al.Design and verification of automatic true triaxial apparatus[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 380-385. (in Chinese))
    [11] 殷建华, 周万欢, KUMRUZZAMAN M D, 等. 新型混合边界真三轴仪加载装置及岩土材料试验结果[J]. 岩土工程学报, 2010, 32(4):493-499.
    (YIN Jian-hua, ZHOU Wan-huan, KUMRUZZAMAN M D, et al.New mixed boundary true triaxial loading device for testing study on 3-D stress-strain-strength behaviour of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 493-499. (in Chinese))
    [12] 施维成, 朱俊高, 代国忠, 等. 球应力和偏应力对粗粒土变形影响的真三轴试验研究[J]. 岩土工程学报, 2015, 37(5): 776-783.
    (SHI Wei-cheng, ZHU Jun-gao, DAI Guo-zhong, et al.True triaxial tests on influence of spherical and deviatoric stresses on deformation of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 776-783. (in Chinese))
    [13] SHI W C, ZHU J G, CHIU C F, et al.Strength and deformation behaviour of coarse-grained soil by true triaxial tests[J]. Journal of Central South University of Technology, 2010, 17(5): 1095-1102.
    [14] ANHDAN L Q, KOSEKI J, HAYANO K, et al.True triaxial apparatuses with two rigid boundaries[C]// Geo-Frontiers Congress. Austin, 2005: 1-10.
    [15] 周跃峰, 潘家军, 程展林, 等. 基于大型真三轴试验的砂砾石料强度-剪胀特性研究[J]. 岩石力学与工程学报, 2017, 36(11): 2818-2825.
    (ZHOU Yue-feng, PAN Jia-jun, CHENG Zhan-lin, et al.Strength and dilation of sandy gravel material based on large-scale true triaxial tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2818-2825. (in Chinese))
    [16] ALSHIBLI K, WILLIAMS H.A true triaxial apparatus for soil testing with mixed boundary conditions[J]. Geotechnical Testing Journal, 2005, 28(6): 534-543.
    [17] CHOI C, ARDUINO P, HARNEY M D.Development of a true triaxial apparatus for sands and gravels[J]. Geotechnical Testing Journal, 2008, 31(1): 32-44.
    [18] PENUMADU D, PRASHANT A. Automated flexible boundary true triaxial system for cohesive soils[J]. Geotechnical Special Publication, 2005(130).
    [19] MANDEVILLE D, PENUMADU D.True triaxial testing system for clay with proportional-integral-differential control[J]. Geotechnical Testing Journal, 2004, 27(2): 1-12.
    [20] 殷宗泽, 朱俊高. 真三轴仪的改进[C]// 第一届全国岩土本构理论研讨会论文集. 北京, 2008.
    (YIN Zong-ze, ZHU Jun-gao.Improvement of true triaxial apparatus[C]// Proceedings of 1st National Conference on Geotechnical Constitutive Theory. Beijing, 2008. (in Chinese))
    [21] 俞茂宏, 昝月稳, 范文, 等. 20世纪岩石强度理论的发展——纪念Mohr-Coulomb强度理论100周年[J]. 岩石力学与工程学报, 2000, 19(5): 545-550.
    (YU Mao-hong, ZAN Yue-wen, FAN Wen, et al.Advances in strength theory of rock in 20 century: 100 years in memory of the Mohr-Coulomb strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5): 545-550. (in Chinese))
    [22] KJELLMAN W.Report on an apparatus for consummate investigation of the mechanical properties[C]// Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering. Cambridge, 1936.
    [23] HAMBLEY E C.A new true triaxial apparatus[J]. Géotechnique, 1969, 19(2): 307-309.
    [24] GREEN G E.Strength and deformation of sand measured in an independent stress control cell[C]// Proceedings of the Roscoe Memorial Symposium. London, 1971.
    [25] 邵生俊, 罗爱忠, 邓国华, 等. 一种新型真三轴仪的研制与开发[J]. 岩土工程学报, 2009, 31(8): 1172-1179.
    (SHAO Sheng-jun, LUO Ai-zhong, DENG Guo-hua, et al.Development of a new true tri-axial apparatus[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1172-1179. (in Chinese))
    [26] 邵生俊, 许萍, 邵帅, 等. 一室四腔刚-柔加载机构真三轴仪的改进与强度试验——西安理工大学真三轴仪[J]. 岩土工程学报, 2017, 39(9): 1575-1582.
    (SHAO Sheng-jun, XU Ping, SHAO Shuai, et al.Improvement and strength testing of true tri-axial apparatus with one chamber and four cells and rigid-flexible-flexible loading boundary mechanism: true triaxial apparatus developed in Xi'an University of Technology[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1575-1582. (in Chinese))
    [27] SHAO S, WANG Q, LUO A, et al.True triaxial apparatus with rigid-flexible-flexible boundary and remolded loess testing[J]. Journal of Testing and Evaluation, 2017, 45(3): 1-10.
    [28] PRASHANT A, PENUMADU D.Effect of intermediate principal stress on overconsolidated kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(3): 284-292.
    [29] 叶冠林, 盛佳韧, 武朝军, 等. 自动控制真三轴仪的研制及验证[J]. 岩土工程学报, 2011, 33(3): 380-385.
    (YE Guan-lin, SHENG Jia-ren, WU Chao-jun, et al.Design and verification of automatic true triaxial apparatus[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 380-385. (in Chinese))
    [30] 殷建华, 周万欢, KUMRUZZAMAN M D, 等. 新型混合边界真三轴仪加载装置及岩土材料试验结果[J]. 岩土工程学报, 2010, 32(4):493-499.
    (YIN Jian-hua, ZHOU Wan-huan, KUMRUZZAMAN M D, et al.New mixed boundary true triaxial loading device for testing study on 3-D stress-strain-strength behaviour of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 493-499. (in Chinese))
    [31] 施维成, 朱俊高, 代国忠, 等. 球应力和偏应力对粗粒土变形影响的真三轴试验研究[J]. 岩土工程学报, 2015, 37(5): 776-783.
    (SHI Wei-cheng, ZHU Jun-gao, DAI Guo-zhong, et al.True triaxial tests on influence of spherical and deviatoric stresses on deformation of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 776-783. (in Chinese))
    [32] SHI W C, ZHU J G, CHIU C F, et al.Strength and deformation behaviour of coarse-grained soil by true triaxial tests[J]. Journal of Central South University of Technology, 2010, 17(5): 1095-1102.
    [33] ANHDAN L Q, KOSEKI J, HAYANO K, et al.True triaxial apparatuses with two rigid boundaries[C]// Geo-Frontiers Congress. Austin, 2005: 1-10.
    [34] 周跃峰, 潘家军, 程展林, 等. 基于大型真三轴试验的砂砾石料强度-剪胀特性研究[J]. 岩石力学与工程学报, 2017, 36(11): 2818-2825.
    (ZHOU Yue-feng, PAN Jia-jun, CHENG Zhan-lin, et al.Strength and dilation of sandy gravel material based on large-scale true triaxial tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2818-2825. (in Chinese))
    [35] ALSHIBLI K, WILLIAMS H.A true triaxial apparatus for soil testing with mixed boundary conditions[J]. Geotechnical Testing Journal, 2005, 28(6): 534-543.
    [36] CHOI C, ARDUINO P, HARNEY M D.Development of a true triaxial apparatus for sands and gravels[J]. Geotechnical Testing Journal, 2008, 31(1): 32-44.
    [37] PENUMADU D, PRASHANT A. Automated flexible boundary true triaxial system for cohesive soils[J]. Geotechnical Special Publication, 2005(130).
    [38] MANDEVILLE D, PENUMADU D.True triaxial testing system for clay with proportional-integral-differential control[J]. Geotechnical Testing Journal, 2004, 27(2): 1-12.
  • 期刊类型引用(5)

    1. 覃浩军,王利杰,蒲国庆,叶坤,周雄雄,王刚. 基于反演参数的高心墙堆石坝蓄水变形研究. 大坝与安全. 2025(01): 47-54 . 百度学术
    2. 张毅,陈敬江. 基于动力计算的震区水库土石坝稳定性及安全评价研究. 水利科技与经济. 2023(06): 6-10+15 . 百度学术
    3. 张宏洋,韩鹏举,马聪,陶元浩,李桐,丁泽霖,韩立炜,张先起,张宪雷. 基于改进粒子群算法的土石坝动力参数反演研究. 水利水电技术(中英文). 2023(06): 110-123 . 百度学术
    4. 张宏洋,李桐,杨益格,丁泽霖,张先起,汪顺生. 基于模态分解和云粒子网络的大坝基岩地震动输入研究. 水利学报. 2023(06): 749-761 . 百度学术
    5. 王茂华,迟世春,周雄雄. 基于地震记录和SSI方法的高土石坝模态识别. 岩土工程学报. 2021(07): 1279-1287 . 本站查看

    其他类型引用(11)

计量
  • 文章访问数:  302
  • HTML全文浏览量:  12
  • PDF下载量:  188
  • 被引次数: 16
出版历程
  • 收稿日期:  2018-06-10
  • 发布日期:  2019-08-24

目录

    /

    返回文章
    返回