• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于透明土技术的多孔介质孔隙流动特性研究

梁越, 陈鹏飞, 林加定, 孙志伟

梁越, 陈鹏飞, 林加定, 孙志伟. 基于透明土技术的多孔介质孔隙流动特性研究[J]. 岩土工程学报, 2019, 41(7): 1361-1366. DOI: 10.11779/CJGE201907022
引用本文: 梁越, 陈鹏飞, 林加定, 孙志伟. 基于透明土技术的多孔介质孔隙流动特性研究[J]. 岩土工程学报, 2019, 41(7): 1361-1366. DOI: 10.11779/CJGE201907022
LIANG Yue, CHEN Peng-fei, LIN Jia-ding, SUN Zhi-wei. Pore flow characteristics of porous media based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1361-1366. DOI: 10.11779/CJGE201907022
Citation: LIANG Yue, CHEN Peng-fei, LIN Jia-ding, SUN Zhi-wei. Pore flow characteristics of porous media based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1361-1366. DOI: 10.11779/CJGE201907022

基于透明土技术的多孔介质孔隙流动特性研究  English Version

基金项目: 国家重点研发计划课题(2018YFB1600403); 重庆市基础研究与前沿探索项目(cstc2018jcyjAX0559); 自然资源部中国地质调查局公益性项目(DD20160291)
详细信息
    作者简介:

    梁 越(1985— ),男,博士,教授,主要从事水利工程灾害形成机理及防治方面的研究工作。E-mail: liangyue2560@163.com。

    通讯作者:

    陈鹏飞,E-mail:1837655414@qq.com

  • 中图分类号: TU411,P641.2

Pore flow characteristics of porous media based on transparent soil technology

  • 摘要: 土体作为一种特殊多孔介质,内部孔隙通道尺度与形态随机性强,导致土体渗流场中孔隙流速分布不均,即存在优势流现象。优势流是影响污染物运移、导致土体渗透变形的重要因素。基于透明土原理,利用聚丙烯酸钠交联聚合物颗粒和蒸馏水,配制成饱和透明多孔介质,并利用一种新的研究透明多孔介质内部流场的装置及方法,将绿色光源激光器、单反相机、十字滑台等组合成简易粒子图像测速(PIV)系统,采集不同水力梯度下透明多孔介质内部流场图像,结合粒子图像测速技术,将得到的流速数据进行统计分析,揭示孔隙液体的流动特性。研究表明,利用自制简易PIV系统进行流场测量,实测孔隙流动结果与宏观流速吻合程度高,能够实现对流场的多点、无扰、高精度测量。研究发现多孔介质内部纵断面上的孔隙面积与纵断面所在位置有关,而孔隙面积越大,断面上的孔隙流速也越大。多孔介质内部孔隙流速分布规律大致相同,优势流速随着断面流速的减小而减小,优势流速越小,其概率密度越高,优势流动现象越显著。
    Abstract: The soil is a kind of special porous medium, whose internal pore channel is extremely random. As a result, the pore velocity distribution is not uniform in its seepage field, which is referred to the preference flow phenomenon. The preference flow is an important factor influencing the pollutant migration and infiltration deformation of the soil. Based on the principle of transparent soils, the saturated transparent porous medium is mixed with sodium polyacrylate cross-linked polymer particles and distilled water. A simple particle image velocimetry (PIV) system is combined with a green light laser, a SLR camera and a cross slide to study seepage in transparent medium. The flow field images of transparent porous medium under different hydraulic gradients are collected, and the velocity data obtained are statistically analyzed by combining with the particle image velocimetry technology to reveal the flow characteristics of pore fluid. The results show that the measured results are in good agreement with the macroscopic velocities. The simple PIV system can be used to measure the flow field with multi-point, non-interference and high precision. It is found that the pore area in the longitudinal section of porous medium is related to the location of the longitudinal section, and the larger the pore area, the larger the pore flow velocity on the section. The distribution of pore velocity in porous medium is approximately the same. With the decrease of longitudinal section velocity, the preference velocity decreases. The smaller the preference velocity is, the higher the probability density is, the more significant the preference flow phenomenon is.
  • [1] 梁越, 陈建生, 陈亮. 孔隙流动数值模拟建模方法及孔隙流速分布规律[J]. 岩土工程学报, 2011, 33(7): 1104-1109.
    (LIANG Yue, CHEN Jian-sheng, CHEN Liang.Numerical simulation model for pore flows and distribution of their velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1104-1109. (in Chinese))
    [2] 隋旺华, 高岳, LIU Jin-yuan.透明土实验技术现状与展望[J]. 煤炭学报, 2011, 36(4): 577-582.
    (SUI Wang-hua, GAO Yue, LIU Jin-yuan.Status and prospect of transparent soil experimental technique[J]. Journal of China Coal Society, 2011, 36(4): 577-582. (in Chinese))
    [3] 高岳, 隋旺华. 熔融石英型透明砂土及其岩土工程性质[J]. 徐州工程学院学报, 2016, 31(2): 60-66.
    (GAO Yue, SUI Wang-hua.Geotechnical properties of transparent sand made of fused silicap[J]. Journal of Xuzhou Institute of Technology(Natural Sciences Edition, 2016, 31(2): 60-66. (in Chinese))
    [4] 孔纲强, 刘璐, 刘汉龙, 等. 玻璃砂透明土变形特性三轴试验研究[J]. 岩土工程学报, 2013, 35(6): 1140-1146.
    (KONG Gang-qiang, LIU Lu, LIU Han-long, et al.Triaxial tests on deformation characteristics of transparent glass sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1140-1146. (in Chinese))
    [5] 孔纲强, 孙学谨, 李辉, 等. 孔隙液体对玻璃砂透明土强度特性影响研究[J]. 岩土工程学报, 2016, 38(2): 377-384.
    (KONG Gang-qiang, SUN Xue-jin, LI Hui, et al.Effect of pore fluid on strength properties of transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 377-384. (in Chinese))
    [6] 齐昌广, 范高飞, 崔允亮, 等. 利用人工合成透明土的岩土物理模拟试验[J]. 岩土力学, 2015, 36(11): 3157-3163.
    (QI Chang-Guang, FAN Gao-fei, CUI Yun-liang, et al.Geotechnical physical model test using artificial synthetic transparent soil[J]. Rock and Soil Mechanics, 2015, 36(11): 3157-3163. (in Chinese))
    [7] 曹兆虎, 孔纲强, 刘汉龙, 等. 基于透明土的管桩贯入特性模型试验研究[J]. 岩土工程学报, 2014, 36(8): 1564-1568.
    (CAO Zhao-hu, KONG Gang-qiang, LIU Han-long, et al.Model tests on pipe pile penetration by using transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1564-1568. (in Chinese))
    [8] 王凯剑. 多孔介质流动特征实验研究——水晶玻璃球填充床[D]. 包头: 内蒙古科技大学, 2014.
    (WANG Kai-Jian.Experiment research of flow characteristic in porous media: crystal glass ball packed bed[D]. Baotou: Inner Mongolia University of Science & Technology, 2014. (in Chinese))
    [9] 贾宇鹏, 王景甫, 郑坤灿, 等. 应用粒子图像测试技术测量球床多孔介质单相流动的流场[J]. 物理学报, 2016, 65(10): 263-269.
    (JIA Yu-peng, WANG Jing-fu, ZHENG Kun-can, et al.Measurement of single phase flow in porous media using PIV technique[J]. Acta Physica Sinica, 2016, 65(10): 263-269. (in Chinese))
    [10] ARTHUR J K, RUTH D W, TACHIE M F.PIV measurements of flow through a model porous medium with varying boundary conditions[J]. Journal of Fluid Mechanics, 2009, 629: 343.
    [11] SEN D, NOBES D S, MITRA S K.Optical measurement of pore scale velocity field inside microporous media[J]. Microfluidics & Nanofluidics, 2012, 12(1/2/3/4): 189-200.
    [12] PATIL V A, LIBURDY J A.Turbulent flow characteristics in a randomly packed porous bed based on particle image velocimetry measurements[J]. Physics of Fluids, 2013, 25(4): 201.
    [13] PATIL V A, LIBURDY J A.Flow characterization using PIV measurements in a low aspect ratio randomly packed porous bed[J]. Experiments in Fluids, 2013, 54(4): 1497.
    [14] HARSHANI H M D, GALINDO-TORRES S A, SCHEUERMANN A, et al. Experimental study of porous media flow using hydro-gel beads and LED based PIV[J]. Measurement Science & Technology, 2017, 28(1): 015902.
    [15] OVER B, RATHKE B, WILL S.Investigations on particle diffusion in porous glass by angle-dependent dynamic light scattering[J]. Journal of Molecular Liquids, 2016, 222: 972-980.
    [16] NI W J, CAPART H.Cross-sectional imaging of refractive- index-matched liquid-granular flows[J]. Experiments in Fluids, 2015, 56(8): 163.
    [17] 柯森繁, 石小涛, 王恩慧, 等. 简易粒子图像测速(PIV)技术开发与优化技巧[J]. 长江科学院院报, 2016, 33(8): 144-150.
    (KE Sen-fan, SHI Xiao-tao, WANG En-hui, et al.Development and optimization skill of simple particle image velocimetry technology[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(8): 144-150. (in Chinese))
  • 期刊类型引用(16)

    1. 陈威,王法鑫,蒙邹蕾,姚森,王翀霄,孙阳. 大直径盾构推进引起的桩基侧向位移分析. 甘肃科学学报. 2024(02): 95-101 . 百度学术
    2. 丁智,张默爆,张霄,魏新江,申文明,周俊宏. 饱和土地区不同直径盾构穿越既有隧道的理论研究. 中南大学学报(自然科学版). 2024(04): 1447-1462 . 百度学术
    3. 张志军,王永杰,陈海伦,贺晨,綦嘉诚,杨智,张连君. 盾构区间隧道下穿暗渠施工稳定性分析. 市政技术. 2024(07): 95-100+108 . 百度学术
    4. 高子明. 盾构隧道穿越饱和砂土层的流固耦合分析. 低温建筑技术. 2024(11): 131-136 . 百度学术
    5. 蔡晓明,潘泓,骆冠勇,曹洪. 大直径盾构施工引起的软土竖向变形计算研究. 河南理工大学学报(自然科学版). 2023(01): 185-193 . 百度学术
    6. 白伟,宁茂权,关振长. 地形不对称条件下盾构隧道掘进施工的地表沉降特性. 福州大学学报(自然科学版). 2023(02): 205-212 . 百度学术
    7. 房新胜,叶来宾,朱牧原,杜贵新. 清华园隧道大直径泥水盾构始发控制掘进分析. 铁道勘察. 2022(01): 81-86 . 百度学术
    8. 杨召召,祝彦知,纠永志. 盾构隧道施工引起纵向地表沉降的黏弹性分析. 河南城建学院学报. 2022(04): 1-6+18 . 百度学术
    9. 汤新辉,首正勇,刘建柯. 超大直径盾构施工引发的上软下硬地层地表沉降规律. 矿冶工程. 2022(05): 34-38+43 . 百度学术
    10. 许梦飞,姜谙男,史洪涛,李德生,万友生,程利民. 下穿暗涵盾构隧道施工过程损伤-渗流耦合分析. 公路工程. 2022(05): 47-54+101 . 百度学术
    11. 苏凤阳,朱建才,李东泰,董毓庆,丁智,陈乐华. 上软下硬地层大直径泥水盾构施工土体变形研究. 建筑结构. 2022(S2): 2675-2681 . 百度学术
    12. 周洁. 大直径泥水盾构机滚动角纠偏技术. 安徽建筑. 2021(01): 164-166 . 百度学术
    13. 邓皇适,傅鹤林,史越. 小转弯半径曲线盾构隧道开挖引发地表沉降计算. 岩土工程学报. 2021(01): 165-173 . 本站查看
    14. 丁智,何晨阳,董毓庆,吴勇,冯丛烈. 含气地层盾构施工引起的土体变形理论研究. 岩石力学与工程学报. 2021(11): 2330-2343 . 百度学术
    15. 朱帆济. 大直径泥水盾构施工对粉质黏土地层变形的影响. 施工技术. 2020(09): 71-73 . 百度学术
    16. 牟天光,祝江林. 不同施工条件下双线盾构隧道施工引发地表变形规律研究. 湖南文理学院学报(自然科学版). 2020(04): 75-79 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 31
出版历程
  • 收稿日期:  2018-06-06
  • 发布日期:  2019-07-24

目录

    /

    返回文章
    返回