• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于数字图像相关技术的土体干缩开裂过程研究

林銮, 唐朝生, 程青, 曾浩, 施斌

林銮, 唐朝生, 程青, 曾浩, 施斌. 基于数字图像相关技术的土体干缩开裂过程研究[J]. 岩土工程学报, 2019, 41(7): 1311-1318. DOI: 10.11779/CJGE201907016
引用本文: 林銮, 唐朝生, 程青, 曾浩, 施斌. 基于数字图像相关技术的土体干缩开裂过程研究[J]. 岩土工程学报, 2019, 41(7): 1311-1318. DOI: 10.11779/CJGE201907016
LIN Luan, TANG Chao-sheng, CHENG Qing, ZENG Hao, SHI Bin. Desiccation cracking bebavior of soils based on digital image correlation technique[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1311-1318. DOI: 10.11779/CJGE201907016
Citation: LIN Luan, TANG Chao-sheng, CHENG Qing, ZENG Hao, SHI Bin. Desiccation cracking bebavior of soils based on digital image correlation technique[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1311-1318. DOI: 10.11779/CJGE201907016

基于数字图像相关技术的土体干缩开裂过程研究  English Version

基金项目: 国家自然科学基金项目(41572246,41772280,41230636,41322019); 江苏省自然科学基金项目(BK20171228、BK20170394); 中央高校基本科研业务费专项项目
详细信息
    作者简介:

    林 銮(1995— ),女,硕士研究生,主要从事工程地质与环境岩土工程研究工作。E-mail: linluan208@126.com。

    通讯作者:

    唐朝生,E-mail:tangchaosheng@nju.edu.cn

  • 中图分类号: TU441

Desiccation cracking bebavior of soils based on digital image correlation technique

  • 摘要: 在干燥条件下,土体极易蒸发失水收缩产生开裂,深入研究土体干缩开裂过程对准确掌握干旱气候环境中的土体工程性质响应特性具有重要意义。通过对黏性土开展室内干燥试验,采用数码相机实时记录土体表面裂隙的动态发育过程,结合数字图像相关技术,获取土体收缩开裂全过程。结果表明:①裂隙通常在土体表面张拉应力集中处产生,裂隙产生后周围应力场得到迅速释放并发生重排,且裂隙间倾向于成直角相交;②土体表面的位移场和应变场可以有效反映土体收缩开裂过程中的动态特征,能为分析和预测裂隙的演化过程提供重要参考信息;③土体被裂隙分割成不同的块区,每个块区在收缩过程中都存在收缩中心现象,且各块区的收缩中心位置会随时间而变化;④数字图像相关技术能有效识别不同图像之间的灰度特征值,能在完全不扰动土样的条件下准确获取土体表面干缩变形信息的时空演化特征,为研究土体干缩开裂动态过程及机理提供了优越的技术手段,具有较好的推广价值。
    Abstract: Under dry condition, the soil is prone to evaporation, leading to desiccation cracking. It is of great significance to deeply study the desiccation cracking process of soils to accurately grasp the engineering response characteristics of soils in arid climate environment. In conducting laboratory drying tests on cohesive soils, digital cameras are used to record the dynamic development of surface cracks in real time. By using the digital image correlation techniques, the plane strain field and displacement field of the whole process of desiccation cracking of soils are obtained. The experimental results show that: (1) The cracks are usually generated at the position where the tensile stress is concentrated, and the stress is then rearranged when the surrounding stress is rapidly released, and the cracks tend to intersect with other cracks at right angles. (2) The displacement field and strain field can effectively confirm some movement characteristics of the soils during the desiccation cracking process, thus providing assistance for analyzing the dynamic evolution process of cracks. (3) The soils are divided into different blocks by cracks, each block has its shrinkage center, and the shrinkage center will change with time. (4) The digital image correlation technique can effectively identify the gray scale feature values between different images, obtain the surface deformation information, and provide valid technical means for the study on desiccation cracking characteristics of soils.
  • [1] TOWNER G D.The influence of sand‐and silt‐size particles on the cracking during drying of small clay‐dominated aggregates[J]. European Journal of Soil Science, 1988, 39(3): 347-356.
    [2] MORRIS P H, GRAHAM J, WILLIAMS D J.Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29(2): 263-277.
    [3] WEINBERGER R.Initiation and growth of cracks during desiccation of stratified muddy sediments[J]. Journal of Structural Geology, 1999, 21(4): 379-386.
    [4] KODIKARA J, COSTA S.Desiccation cracking in clayey soils: mechanisms and modelling[M]. Heidelberg: Springer, 2013: 21-32.
    [5] TANG C, SHI B, LIU C, et al.Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101(3): 204-217.
    [6] TANG C S, CUI Y J, TANG A M, et al.Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Eng. Geol, 2010, 114(3/4): 261-266.
    [7] BAKER R.Tensile strength, tension cracks, and stability of slopes[J]. Soils & Foundations, 1981, 21(2): 1-19.
    [8] 袁俊平. 非饱和膨胀土裂隙的量化模型与边坡稳定性研究[J]. 南京: 河海大学, 2003.
    (YUAN Jun-ping.Quantification model and slope stability of unsaturated expansive soil crack[J]. Nanjing: Hohai University, 2003. (in Chinese))
    [9] 殷宗泽, 袁俊平, 韦杰, 等. 论裂隙对膨胀土边坡稳定的影响[J]. 岩土工程学报, 2012, 34(12): 2155-2161.
    (YIN Zong-ze, YUAN Jun-ping, WEI Jie, et al.Influences of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2155-2161. (in Chinese))
    [10] KRISNANTO S, RAHARDJO H, FREDLUND D G, et al.Mapping of cracked soils and lateral water flow characteristics through a network of cracks[J]. Engineering Geology, 2014, 172(5): 12-25.
    [11] KLEPPE J H, OLSON R E.Desiccation cracking of soil barriers[M]. JOHNSON A J, FROBEL R K, CAVALLIS N J, et al, eds. Hydraulic Barriers in Soil & Rock. Philadephia: ASTM, 1985, 874:13.
    [12] MILLER C J, MI H, YESILLER N.Experimental analysis of desiccation crack propagation in clay liners[J]. Journal of the American Water Resources Association, 1998, 34(3): 677-686.
    [13] ALBRECHT B A, BENSON C H.Effect of desiccation on compacted natural clays[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2001, 127(1): 67-75.
    [14] FOSTER M, FELL R, SPANNAGLE M.The statistics of embankment dam failures and accidents[J]. Canadian Geotechnical Journal, 2011, 37(5): 1000-1024.
    [15] YESILLER N, MILLER C J, INCI G, et al.Desiccation and cracking behavior of three compacted landfill liner soils[J]. Engineering Geology, 2000, 57(1): 105-121.
    [16] GUIDI G, PAGLIAI M, PETRUZZELLI G.Quantitative size evaluation of cracks and clods in artificially dried soil samples[J]. Geoderma, 1978, 20(2): 105-113.
    [17] DE-LIMA O A L, SHARMA M M. A generalized Maxwell-Wagner theory for membrane polarization in shalysands[J]. Geophysics, 1992, 57(3): 431-440.
    [18] GILL D R, LEHANE B M.An optical technique for investigating soil displacement patterns[J]. Geotechnical Testing Journal, 2001, 24(3): 324-329.
    [19] KAHN-JETTER Z L, CHU T C. Three-dimensional displacement measurement using digital image correlation and photogrammic analysis[J]. Experimental Mechanics,1990, 30: 10-16.
    [20] 李元海, 靖洪文, 朱合华, 等. 数字照相量测在砂土地基离心试验中的应用[J]. 岩土工程学报, 2006, 28(3): 306-311.
    (LI Yuan-hai, JING Hong-wen, ZHU He-hua, et al.Experimental investigation on progressive deformation patterns of sand foundation in centrifuge test using digital photogrammetry[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 306-311. (in Chinese))
    [21] LEE D, TIPPUR H, KIRUGULIGE M.Experimental study of dynamic crack growth in unidirectional graphite/epoxy using digital image correlation method and high-speed photography[J]. Journal of Composite Materials, 2009, 43(19): 2081-2108.
    [22] 赵程, 鲍冲, 松田浩, 等. 数字图像技术在节理岩体裂纹扩展试验中的应用研究[J]. 岩土工程学报, 2015, 37(5): 944-951.
    (ZHAO Cheng, BAO Chong, SONG Tian-hao, et al.Application of digital image correlation method in experimental research on crack propagation of brittle rock[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 944-951. (in Chinese))
    [23] 张昕, 乐金朝, 刘汉东. 砂土中群锚锚周土体变形特性模型试验研究[J]. 岩土力学, 2016, 37(增刊1): 240-248.
    (ZHANG Xin, YUE Jin-chao, LIU Han-dong.Experimental study of soil deformation around group anchors in sand[J]. Rock and Soil Mechanics, 2016, 37(S1): 240-248. (in Chinese))
    [24] TENG Y, STANIER S, GOURVENEC S M.Synchronised multi-scale image analysis of soil deformations[J]. International Journal of Physical Modelling in Geotechnics, 2017, 17(1).
    [25] YAMAGUCHI I.A laser-speckle strain gauge[J]. Journal of Physics E: Scientific Instruments, 1981, 14(14): 1270-1273.
    [26] RANSON W F, PETERS W H.Digital image techniques in experimental stress analysis[J]. Optical Engineering, 1982, 21(3): 427-431.
    [27] NAHLAWI H, KODIKARA J K.Laboratory experiments on desiccation cracking of thin soil layers[J]. Geotechnical and Geological Engineering, 2006, 24: 1641-1664.
    [28] CORTE A, HIGASHI A.Experimental research on desiccation cracks in soil[R]. Illinois: Army Snow Ice and Permafrost Research Establishment, 1960.
    [29] TANG C S, SHI B, LIU C, et al.Experimental characterization of shrinkage and desiccation cracking in thin clay layer[J]. Applied Clay Science, 2011, 52(1): 69-77.
  • 期刊类型引用(24)

    1. 方华强,丁选明,张灵芝,李一夫,王红,辛义文,彭宇,李铮. 基于粒子图像测速技术的纤维改性珊瑚泥面层龟裂模型试验研究. 岩土力学. 2025(02): 368-380 . 百度学术
    2. 秦鹏举,轩龙龙,王建美,邢鲜丽. 干湿循环作用下非饱和压实黄土变形和电阻率特征的室内试验. 同济大学学报(自然科学版). 2025(04): 565-573 . 百度学术
    3. 刘晓红,王宇鑫,刘昱辰,蔡海星,刘三县. 考虑填土压实度的主动破裂带模型试验研究. 湖南理工学院学报(自然科学版). 2025(01): 37-44 . 百度学术
    4. 牟春梅,李刘悦,夏燚. 基于摄影测量的三轴土体剪切带演化规律. 工程科学学报. 2024(05): 927-936 . 百度学术
    5. 高乾丰,吴昕阳,曾铃,余慧聪,余涵. 红黏土裂隙湿化自愈行为及强度影响机制. 中国公路学报. 2024(06): 157-168 . 百度学术
    6. 张少卫,党发宁,范翔宇,管浩. 机制砂级配及含量对压实膨胀土干缩裂隙演化规律. 西安工业大学学报. 2024(03): 366-374 . 百度学术
    7. 胡长明,胡婷婷,朱武卫,袁一力,杨晓,柳明亮,侯旭辉. 干湿循环作用下压实黄土裂隙演化特征. 长江科学院院报. 2024(08): 96-103+112 . 百度学术
    8. 张红日,杨济铭,徐永福,肖杰,韩仲,汪磊,林宇亮. 基于数字图像相关技术的膨胀土三维裂隙扩展特性研究. 岩土力学. 2024(S1): 309-323 . 百度学术
    9. 韩杰欣,邓芷慧,王旌靡,邓羽松,黄智刚,段晓倩. 干湿交替条件下花岗岩崩岗区土壤裂隙发育规律. 水土保持学报. 2024(05): 262-271 . 百度学术
    10. 杨济铭,张红日,陈林,徐永福. 基于数字图像相关技术的膨胀土边坡裂隙形态演化规律分析. 中南大学学报(自然科学版). 2022(01): 225-238 . 百度学术
    11. 任意,江兴元,吴长虹,孟生勇,赵珍贤. 干湿循环下红黏土斜坡裂隙性和水土响应试验研究. 水利水电技术(中英文). 2022(04): 172-179 . 百度学术
    12. 龙郧铠,张家明,陈茂. 中国南方碳酸盐岩上覆红黏土龟裂研究进展. 武汉理工大学学报(交通科学与工程版). 2022(03): 506-512 . 百度学术
    13. 李关洋,顾凯,王翔,施斌. 含裂隙膨胀土无侧限抗压强度特征试验研究. 水文地质工程地质. 2022(04): 62-70 . 百度学术
    14. 祝艳波,刘耀文,郑慧涛,赵丹,丁绮萱,兰恒星. 基于DIC技术的三趾马红土表面干缩裂纹扩展与自愈规律. 工程地质学报. 2022(04): 1157-1168 . 百度学术
    15. 王崇宇,刘晓平,曹周红,毛文涛,蔡忠志. 有限宽度土体被动土压力及滑裂面试验研究. 地下空间与工程学报. 2022(04): 1250-1258+1265 . 百度学术
    16. 汪时机,骆赵刚,李贤,文桃. 考虑局部含水率效应的浅层土体开裂过程与力学机制分析. 岩土力学. 2021(05): 1395-1403 . 百度学术
    17. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 . 百度学术
    18. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 . 百度学术
    19. 王娜,王佳妮,张晓明,段晓阳. 控制厚度条件下崩岗土体的裂隙演化特征. 水土保持学报. 2021(06): 175-182 . 百度学术
    20. 张曼婷,吴明亮,陈爱军,潘晓屹,李晨嘉,黄文昭,李文涛. 基于DIC技术的红黏土干缩开裂试验研究. 湖南城市学院学报(自然科学版). 2021(06): 7-11 . 百度学术
    21. 陈爱军,陈俊桦,程峰,吴迪. 湖南邵阳地区高液限红黏土干缩裂隙演化过程的量化分析. 农业工程学报. 2021(20): 146-153 . 百度学术
    22. 蔡正银,朱锐,黄英豪,张晨,郭万里,陈皓. 冻融过程对膨胀土渠道边坡劣化模式的影响. 水利学报. 2020(08): 915-923 . 百度学术
    23. 唐朝生. 极端气候工程地质:干旱灾害及对策研究进展. 科学通报. 2020(27): 3009-3027+3008 . 百度学术
    24. 史晓东,刘洋. 基于特征显著性的地震灾害发生后建筑物裂缝智能检测模型. 灾害学. 2020(04): 38-42 . 百度学术

    其他类型引用(17)

计量
  • 文章访问数:  311
  • HTML全文浏览量:  8
  • PDF下载量:  250
  • 被引次数: 41
出版历程
  • 收稿日期:  2018-06-06
  • 发布日期:  2019-07-24

目录

    /

    返回文章
    返回