• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

盾构隧道施工预测与动态调控方法研究

周健, 柴嘉辉, 丁修恒, 于仕才, 张艳伟

周健, 柴嘉辉, 丁修恒, 于仕才, 张艳伟. 盾构隧道施工预测与动态调控方法研究[J]. 岩土工程学报, 2019, 41(5): 821-828. DOI: 10.11779/CJGE201905004
引用本文: 周健, 柴嘉辉, 丁修恒, 于仕才, 张艳伟. 盾构隧道施工预测与动态调控方法研究[J]. 岩土工程学报, 2019, 41(5): 821-828. DOI: 10.11779/CJGE201905004
ZHOU Jian, CHAI Jia-hui, DING Xiu-heng, YU Shi-cai, ZHANG Yan-wei. Construction prediction and dynamic control of shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 821-828. DOI: 10.11779/CJGE201905004
Citation: ZHOU Jian, CHAI Jia-hui, DING Xiu-heng, YU Shi-cai, ZHANG Yan-wei. Construction prediction and dynamic control of shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 821-828. DOI: 10.11779/CJGE201905004

盾构隧道施工预测与动态调控方法研究  English Version

详细信息
    作者简介:

    周健(1957— ),男,教授,博士,主要从事岩土工程风险管理、软土地基处理技术等研究。E-mail: tjugezhoujian@tongji.edu.cn。

  • 中图分类号: TU45

Construction prediction and dynamic control of shield tunnel

  • 摘要: 隧道近距离穿越已有结构的风险不容忽略,而盾构隧道开挖引起的地层变形主要由地层损失引起,通过对施工过程的调整控制可影响开挖过程中的地层损失率。基于此,提出一种盾构隧道施工预测与动态调控的方法:基于地层损失理论建立地层损失率与地层变形的关系,同时基于经验公式对盾构施工过程进行动态调控,使盾构施工引起的变形满足控制要求。具体而言,通过试算确定满足变形要求的最大地层损失率,并进一步依据已盾构区段的施工情况,通过动态调控使风险区段地层损失率符合要求,从而满足安全施工的要求。相对其他方法,本方法易于操作、具有实用性,同时减少了人为因素,结果较准确。通过苏州轨道交通3号线下穿1号线重叠隧道的工程实例验证,具有可行性,针对该下穿区段,提出地层损失率应控制在0.76%以内,并为3号线下穿1号线给出安全施工建议。
    Abstract: It can not be ignored that the construction of shield tunnel in the proximity of the existing structures is risky. The stratum loss is the major cause of ground deformation during the construction process of shield tunnel. It is suggested that the stratum loss rate should be controlled by regulating the construction procedure. Therefore, based on these two premises, a method for construction prediction and dynamic control during shield tunneling is proposed: to establish a relationship between the stratum loss rate and the ground deformation based on the stratum loss theory, meanwhile to dynamically regulate the construction procedure to make ground deformation meet the control requirements. To be more specific, firstly through pilot calculation the maximum stratum loss rate is obtained under the control requirements, then, the construction procedure is dynamically regulated based on the data from constructed sections to make sure that the stratum loss rate of risky sections does not exceed the maximum value and thus meets the requirements of construction safety. Compared with other methods, this method is relatively simple and practical, and at the same time less impressionable by human factors, which makes the results more accurate. Through the example of the project case of Suzhou Metro Line 3, the feasibility of the proposed method is illustrated. The results show that the stratum loss rate should be kept within the limit of 0.76% in the overlapped section. Moreover, some construction advices are also put forward regarding the project of Suzhou Metro Line 3 tunneling beneath Line 1 to significantly lower the construction risks.
  • [1] PECK R B.Deep excavations and tunnelling in soft ground[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 225-290.
    [2] MAIR R J.Subsurface settlement profiles above tunnels in clays[J]. Géotechnique, 1993, 43(2): 361-362.
    [3] LEE K M, ROWE R K, LO K Y.Subsidence owing to tunneling: I Estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929-940.
    [4] SAGASETA C.Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301-320.
    [5] LOGANATHAN N, POULOS H G.Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1998, 124(9): 846-856.
    [6] PARK K H.Elastic solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics, 2004, 4(4): 310-318.
    [7] 刘宝琛, 张家生. 近地表开挖引起的地表沉降的随机介质方法[J]. 岩石力学与工程学报, 1995, 14(4): 289-296.
    (LIU Bao-chen, ZHANG Jia-sheng.Stochastic method for ground subsidence due to near surface excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 1995, 14(4): 289-296. (in Chinese))
    [8] 朱忠隆, 张庆贺, 易宏传. 软土隧道纵向地表沉降的随机预测方法[J]. 岩土力学, 2001, 22(1): 56-59.
    (ZHU Zhong-long, ZHANG Qing-he, YI Hong-chuan.Stochastic theory for predicting longitudinal settlement in soft-soil tunnel[J]. Rock and Soil Mechanics, 2001, 22(1): 56-59. (in Chinese))
    [9] 于宁, 朱合华. 盾构隧道施工地表变形分析与三维有限元模拟[J]. 岩土力学, 2004, 25(8): 1330-1334.
    (YU Ning, ZHU He-hua.Analysis of earth deformation caused by shield tunnel construction and 3D-FEM simulation[J]. Rock and Soil Mechanics, 2004, 25(8): 1330-1334. (in Chinese))
    [10] 周健, 陆丽君, 贾敏才. 基于FLAC2D数值方法的盾构隧道地层损失率研究[J]. 地下空间与工程学报, 2014, 10(4): 902-907.
    (ZHOU Jian, LU Li-jun, JIA Min-cai.Research of the strata loss rate of shield tunnel excavation based on FLAC2D numerical method[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(4): 902-907. (in Chinese))
    [11] 王建秀, 付慧仙, 朱雁飞, 等. 基于地层损失的盾构沉降计算方法研究进展[J]. 地下空间与工程学报, 2010, 6(1): 112-119.
    (WANG Jian-xiu, FU Hui-xian, ZHU Yan-fei, et al.Advance in calculation of subsidence caused by shield tunnel based on strata loss[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(1): 112-119. (in Chinese))
    [12] 王建秀, 田普卓, 付慧仙, 等. 基于地层损失的盾构隧道地面沉降控制[J]. 地下空间与工程学报, 2012, 8(3): 569-576.
    (WANG Jian-xiu, TIAN Pu-zhuo, FU Hui-xian, et al.Ground settlement controlling of shield tunnel by strata loss theory[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(3): 569-576. (in Chinese))
    [13] 王洪新, 傅德明. 土压平衡盾构掘进的数学物理模型及各参数间关系研究[J]. 土木工程学报, 2006, 39(9): 86-90.
    (WANG Hong-xin, FU De-ming.A mathematical model and the related parameters for EPB shield tunneling[J]. China Civil Engineering Journal, 2006, 39(9): 86-90. (in Chinese))
    [14] 王洪新, 傅德明. 土压平衡盾构平衡控制理论及试验研究[J]. 土木工程学报, 2007, 40(5): 61-68.
    (WANG Hong-xin, FU De-ming.Theoretical and test studies on balance control of EPB shields[J]. China Civil Engineering Journal, 2007, 40(5): 61-68. (in Chinese))
    [15] 王洪新. 土压平衡盾构刀盘挤土效应及刀盘开口率对盾构正面接触压力影响[J]. 土木工程学报, 2009, 42(7): 113-118.
    (WANG Hong-xin.Effect of cutter head compressing the front soil and influence of head aperture ratio on contact pressure of EPB shield to the front soil[J]. China Civil Engineering Journal, 2009, 42(7): 113-118. (in Chinese))
    [16] 李忠超, 陈仁朋, 孟凡衍, 等. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 2015, 49(7): 1268-1275.
    (LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, et al.Tunnel boring machine tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(7): 1268-1275. (in Chinese))
    [17] Itasca Consulting Group, Inc. FLAC-fast Lagrangian analysis of continua(Version 6.0) users' manual[R]. Minneapolis: Itasca Consulting Group, Inc, 2008.
    [18] 高冰, 杨再兴. 重叠盾构地铁隧道下穿施工对上方隧道的影响[J]. 城市建设理论研究(电子版), 2018(5): 134-135, 90. (GAO Bing, YANG Zai-xing. Influence of overlapped shield tunneling on existing tunnel above[J]. Theoretical Research of Urban Construction (Electronic Edition), 2018(5): 134-135, 90. (in Chinese))
计量
  • 文章访问数:  367
  • HTML全文浏览量:  4
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-08
  • 发布日期:  2019-05-24

目录

    /

    返回文章
    返回