• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

特征应力空间中土的分数阶临界状态模型

梁靖宇, 杜修力, 路德春, 韩佳月

梁靖宇, 杜修力, 路德春, 韩佳月. 特征应力空间中土的分数阶临界状态模型[J]. 岩土工程学报, 2019, 41(3): 581-587. DOI: 10.11779/CJGE201903022
引用本文: 梁靖宇, 杜修力, 路德春, 韩佳月. 特征应力空间中土的分数阶临界状态模型[J]. 岩土工程学报, 2019, 41(3): 581-587. DOI: 10.11779/CJGE201903022
LIANG Jing-yu, DU Xiu-li, LU De-chun, HAN Jia-yue. Fractional-order critical state model for soils in characteristic stress space[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 581-587. DOI: 10.11779/CJGE201903022
Citation: LIANG Jing-yu, DU Xiu-li, LU De-chun, HAN Jia-yue. Fractional-order critical state model for soils in characteristic stress space[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 581-587. DOI: 10.11779/CJGE201903022

特征应力空间中土的分数阶临界状态模型  English Version

基金项目: 国家自然科学基金项目(51522802,51421005,51538001); 北京市自然科学基金重点项目(8161001)
详细信息
    作者简介:

    梁靖宇(1988- ),男,博士研究生,主要从事强度理论,土的本构模型方面的研究工作。E-mail: liangjingyu@emails.bjut.edu.cn。

    通讯作者:

    杜修力,E-mail:duxiuli@bjut.edu.cn

Fractional-order critical state model for soils in characteristic stress space

  • 摘要: 分数阶微分具有连续描述零阶微分到一阶微分的特性,曲线的分数阶梯度方向不再与曲线切线垂直。分数阶微分的梯度非正交性质,可用于描述土的塑性流动方向与屈服面非正交的特性。基于特征应力与临界状态理论,在特征应力空间中利用非正交流动法则描述土的塑性应变增量方向,从而建立土的分数阶临界状态本构模型。所建立的模型首次将分数阶微分与特征应力统一于临界状态理论框架内,一方面模型可以同时描述三轴压缩和三轴伸长试验条件下土的变形和强度特性,另一方面也给出了利用三轴试验确定分数阶阶次的方法。所建立的本构模型只有5个材料参数,参数物理意义清晰,可通过常规室内土工试验确定,且模型可退化为修正剑桥模型。通过对典型应力路径条件下的试验结果进行预测表明,所建的模型能够合理地描述土的变形与强度特性。
    Abstract: The fractional derivative possesses the properties of describing the zero-order differential to the first-order one consecutively, and the fractional gradient direction of the curve is no longer perpendicular to its tangent. The non-orthogonal gradient law of fractional differential can be used to describe the non-associated flow rules between the plastic flow direction and the yield surface of soils. Based on the concept of characteristic stress and the critical state theory, the fractional-order flow law is used to describe the direction of plastic strain increment of soils in the characteristic stress space, and the fractional-order critical state model is then established. The fractional-order differential and the characteristic stress are unified by using the established constitutive model in the framework of the critical state theory. On the one hand, the deformation and strength properties of soils under triaxial compression and extension can be directly described by the established constitutive model. On the other hand, the method for determining the fractional order by triaxial tests is also given. There are only 5 material parameters with clear physical meanings in the established constitutive model, and they can be easily determined by the conventional triaxial tests. Moreover, the proposed constitutive model can also be simplified into the modified Cam-clay model. Finally, the new model is validated by means of the test results from the conventional triaxial tests.
  • [1] ZHOU H W, WANG C P, HAN B B, et al.A creep constitutive model for salt rock based on fractional derivatives[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 116-121.
    [2] 殷德顺, 和成亮, 陈文. 岩土应变硬化指数理论及其分数阶微积分理论基础[J]. 岩土工程学报, 2010, 32(5): 762-766.
    (YIN De-shun, HE Cheng-liang, CHEN Wen.Theory of geotechnical strain hardening index and its rationale from fractional order calculus[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 762-766. (in Chinese))
    [3] SMIT W, DE VRIES H.Rheological models containing fractional derivatives[J]. Rheologica Acta, 1970, 9(4): 525-534.
    [4] YIN D S, WU H, CHENG C, et al.Fractional order constitutive model of geomaterials under the?condition of triaxial test[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 961-972.
    [5] SUMELKA W.Fractional viscoplasticity[J]. Mechanics Research Communications. 2014, 56: 31-36.
    [6] SUMELKA W, NOWAK M.Non-normality and induced plastic anisotropy under fractional plastic flow rule: a numerical study[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(5): 651-675.
    [7] SUN Y F, XIAO Y. Fractional order plasticity model for granular soils subjected to monotonic triaxial compression[J]. International Journal of Solids and Structures, 2017, 118/119: 224-234.
    [8] SUN Y F, INDRARATNA B, CARTER J P, et al.Application of fractional calculus in modelling ballast deformation under cyclic loading[J]. Computers and Geotechnics, 2017, 82: 16-30.
    [9] LI X S, DAFALIAS Y F.Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
    [10] LU D C, MA C, DU X L, et al.Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept[J]. International Journal of Geomechanics, ASCE, 2017, 17(2): 4016058.
    [11] MA C, LU D C, DU X L, et al.Developing a 3D elastoplastic constitutive model for soils: a new approach based on characteristic stress[J]. Computers and Geotechnics, 2017, 86: 129-140.
    [12] LU D C, LIANG J Y, DU X L, et al.Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule[J]. Comput Geotech, 2019, 105: 277-290.
    [13] 路德春, 曹胜涛, 程星磊, 等. 欠固结土的弹塑性本构模型[J]. 土木工程学报, 2010, 43(增刊): 320-326.
    (LU De-chun, CAO Sheng-tao, CHENG Xing-lei, et al.An elastoplastic constitutive model for underconsolidated clay[J]. China Civil Engineering Journal, 2010, 43(S0): 320-326. (in Chinese))
    [14] YU H S.CASM: A unified state parameter model for clay and sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(8): 621-653.
    [15] NAKAI T, MATSUOKA H.A generalized elastoplastic constitutive model for clay in three-dimensional stresses[J]. Soils and Foundations, 1986, 26(3): 81-98.
    [16] CHOWDHURY E Q, NAKAI T.Consequences of the tij-concept and a new modeling approach[J]. Computers and Geotechnics, 1998, 23(3): 131-164.
  • 期刊类型引用(9)

    1. 刘明芳,陈明辉,吴振元,龙桂华. 基于流固耦合的双线盾构隧道施工诱发地表沉降分析. 湖南文理学院学报(自然科学版). 2024(01): 67-75 . 百度学术
    2. 张耀星,梁连,黄明. 盾构隧道与箱涵交叠下穿铁路开挖面稳定性上限分析. 公路工程. 2024(06): 64-71 . 百度学术
    3. 李兴龙,蔺文帅. 复杂地质条件下矩形顶管下穿管线影响分析. 高速铁路技术. 2023(02): 94-100 . 百度学术
    4. 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验. 隧道与地下工程灾害防治. 2022(03): 67-76 . 百度学术
    5. 童建军,刘大刚,张霄,王志龙,赵思光,李佳旺. 大断面隧道机械化施工支护结构设计方法——以郑万高铁湖北段隧道为例. 隧道建设(中英文). 2021(01): 116-125 . 百度学术
    6. 薛卫新. 剪刀叉匝道在城市地下快速路中的应用. 交通与运输. 2021(03): 32-36 . 百度学术
    7. 米博,项彦勇. 含黏粒砂土地层浅埋盾构隧道开挖渗流稳定性试验. 哈尔滨工业大学学报. 2021(11): 59-65 . 百度学术
    8. 孙廉威,方宇翔,沈雯. 下穿既有管线盾构开挖面失稳机制分析. 地下空间与工程学报. 2020(S1): 278-284 . 百度学术
    9. 田树坤. 滇中红层地质大断面浅埋隧道的工法适应性研究. 公路交通科技(应用技术版). 2019(09): 229-233 . 百度学术

    其他类型引用(21)

计量
  • 文章访问数:  296
  • HTML全文浏览量:  13
  • PDF下载量:  178
  • 被引次数: 30
出版历程
  • 收稿日期:  2018-01-09
  • 发布日期:  2019-03-24

目录

    /

    返回文章
    返回