• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

孔洞对爆生裂纹动态扩展行为影响研究

李盟, 朱哲明, 刘瑞峰, 刘邦

李盟, 朱哲明, 刘瑞峰, 刘邦. 孔洞对爆生裂纹动态扩展行为影响研究[J]. 岩土工程学报, 2018, 40(12): 2191-2199. DOI: 10.11779/CJGE201812005
引用本文: 李盟, 朱哲明, 刘瑞峰, 刘邦. 孔洞对爆生裂纹动态扩展行为影响研究[J]. 岩土工程学报, 2018, 40(12): 2191-2199. DOI: 10.11779/CJGE201812005
LI Meng, ZHU Zhe-ming, LIU Rui-feng, LIU Bang. Influences of holes on dynamic propagation behaviors of blasting cracks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2191-2199. DOI: 10.11779/CJGE201812005
Citation: LI Meng, ZHU Zhe-ming, LIU Rui-feng, LIU Bang. Influences of holes on dynamic propagation behaviors of blasting cracks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2191-2199. DOI: 10.11779/CJGE201812005

孔洞对爆生裂纹动态扩展行为影响研究  English Version

基金项目: 国家自然科学基金项目(11672194); 四川省安全监管局安全生产科技项目(aj20170515161307); 四川省科技计划项目(2018JZ0036)
详细信息
    作者简介:

    李 盟(1987- ),男,河南永城人,博士研究生,主要从事岩石断裂力学的研究工作。E-mail: LmLm0520@126.com。

  • 中图分类号: TU45

Influences of holes on dynamic propagation behaviors of blasting cracks

  • 摘要: 试验研究含有预制裂纹的砂岩圆板在爆炸荷载下不同孔洞间距(S)对裂纹动态扩展行为的影响。试验中采用应变片测试获取爆炸加载波形作为AUTODYN数值模拟裂纹扩展效果及ABAQUS数值计算应力强度因子的加载力。试验中采用CPG测得裂纹起裂—扩展时刻,根据测得试验数据得出普适函数,对ABAQUS计算所得应力强度因子进行修正最终得到裂纹动态极限应力强度因子。通过对比分析在不同孔间距下裂纹的动态极限应力强度因子,裂纹扩展长度及裂纹扩展速度得出以下述结论:①孔洞对爆炸荷载下的预制裂纹动态扩展行为有所影响,且孔洞间距越小其影响效果越显著;②一般情况下裂纹的起裂极限应力强度因子要略高于扩展极限应力强度因子,裂纹的扩展速度对裂纹扩展极限应力强度因子有一定影响,且二者总体趋势呈反比;③当裂纹扩展至孔洞附近时,由于孔洞的作用提高了裂纹的扩展极限应力强度因子,进而降低了裂纹的扩展速度并减小了裂纹的扩展长度。此外若将孔洞视为隧道光面爆破中的辅助孔或周边孔,那么研究结论可为隧道光面爆破中控制断面内的原生裂纹扩展长度,以期达到隧道围岩最大程度上的完整性提供理论支撑。
    Abstract: The influences of different spacings of holes on the pre-crack propagation behaviors of circular sand specimens under blasting loads are investigated. The explosive loading waveform from experiments is obtained as the loading stress of AUTODYN to simulate the crack propagation, and it is embedded in ABAQUS once more to calculate the stress intensity factor (SIF) of the static cracks under dynamic loads. The initiation-propagation time of pre-crack is measured by using CPG in the experiments. According to the CPG data to obtain the universal function, the dynamic initiation-propagation critical SIF is yielded by modifying the static SIF obtained from ABAQUS using the universal function. By comparing and analyzing the dynamic critical SIF, crack propagation velocity and length of crack propagation under different spacings of holes, we can obtain the following conclusions: (1) The holes have an effect on the dynamic propagation behaviors of cracks under blasting loads, and the smaller the spacing, the more remarkable the effect. (2) In general, the crack initiation critical SIF is higher than the propagation one, and the crack propagation velocity has influences on SIF, and their overall trends are inversely propotional. (3) The critical propagation SIF of cracks increases due to the action of the holes when they propagate near the holes, both of whose propagation length and velocity are reduced. In addition, if we take the holes as the auxiliary or surrounding ones in tunnel smooth blasting, the conclusions of this study will provide theoretical support for controlling the crack propagation length to achieve the integrity of surrounding rock.
  • [1] FAR M S, WANG Y.Probabilistic analysis of crushed zone for rock blasting[J]. Computers and Geotechnics, 2016, 80: 290-300.
    [2] YAO W, XU Y, LIU H W, et al.Quantification of thermally induced damage and its effect on dynamic fracture toughness of two mortars[J]. Eng Fract Mech, 2017, 169: 74-88.
    [3] CHEN P W, CHEN J J, GUO B Q, et al.Measurement of the dynamic fracture toughness of alumina ceramic[J]. Dynamic Behavior of Materials, 2016(1): 33-38.
    [4] NEMAT-NASSER S.Compression-induced ductile flow of brittle material fracturing of ductile materials[J]. International Conference on Fracture, 1989: 423-445.
    [5] DONG S M, WANG Y, XIA Y M.A finite element analysis for using Brazilian disk in split Hopkinson pressure bar to investigate dynamic fracture behavior of brittle polymer materials[J]. Polymer Testing, 2006, 25(7): 943-952.
    [6] NAKANO M, KISHIDA K, YAMAUCHI Y, et al.Dynamic fracture initiation in brittle materials under combined mode I/II loading[J]. Journal de physique, 1994, 4(C8): 695-700.
    [7] WANG Q Z, YANG J R, ZHANG C G, et al.Sequential determination of dynamic initiation and propagation toughness of rock using an experimental-numerical- analytical method[J]. Eng Fract Mech, 2015, 141: 78-94.
    [8] WANG X M, ZHU Z M, WANG M, et al.Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts[J]. Eng Fract Mech, 2017, 118: 52-64.
    [9] 张财贵, 曹福, 李炼, 等. 采用压缩单裂纹圆孔板确定岩石动态起裂、扩展和止裂韧度[J]. 力学学报, 2016, 48(3): 624-635.
    (ZHANG Chao-gui, CAO Fu, LI Lian, et al.Determination of dynamic fracture initiation, propagation, and arrest toughness of rock using SCDC specimen[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 624-635. (in Chinese))
    [10] WANG M, ZHU Z M, DONG Y Q, et al.Study of mixed-mode I/II fractures using single cleavage semicircle specimens under impacting loads[J]. Eng Fract Mech, 2017, 177: 33-44.
    [11] 王蒙, 朱哲明, 谢军. 岩石Ⅰ-Ⅱ复合型裂纹动态扩展SHPB实验及数值模拟研究[J]. 岩石力学与工程学报, 2015, 34(12): 2474-2485.
    (WANG Meng, ZHU Zhe-ming, XIE Jun.Experimental and numerical studies of the mixed-mode Ⅰ and Ⅱ crack propagation under dynamic loading using SHPB[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2474-2485. (in Chinese))
    [12] FREUND L B.Dynamic fracture mechanics[M]. Cambridge: Cambridge University Press, 1990.
    [13] RAVI-CHANDAR K.Dynamic fracture[M]. Oxford: Elsevier, 2004: 168-177.
    [14] 徐文涛, 朱哲明, 曾利刚. 爆炸载荷下I型裂纹动态断裂韧度测试方法初探[J]. 岩石力学与工程学报, 2015, 34(增刊1): 2767-2772.
    (XU Wen-tao, ZHU Zhe-ming, ZENG Li-gang.Testing method study of mode-I dynamic fracture toughness under blasting loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2767-2772. (in Chinese))
    [15] KOWSARI K, SCHWARTZENTRUBER J, SPEKT J K, et al.Erosive smoothing of abrasive slurry-jet micro-machined channels in glass, PMMA, and sintered ceramics: Experiments and roughness model[J]. Precision Engineering, 2017, 49: 332-343.
    [16] ZAFAR M S, AHMED N.Nanoindentation and surface roughness profilometry of poly methyl methacrylate denture base materials[J]. Technology and Health Care, 2014, 22(4): 573-581.
    [17] 李盟, 朱哲明, 肖定军, 等. 煤矿岩巷爆破掘进过程中周边眼对裂纹扩展止裂机理[J]. 煤炭学报, 2017, 42(6): 1691-1699.
    (LI Meng, ZHU Zhe-ming, XIAO Ding-jun, et al.Mechanism of crack arrest by peripheral holes during mine rockroadway excavation under blasting[J]. Journal of China Coal Society, 2017, 42(6): 1691-1699. (in Chinese))
    [18] 朱哲明, 李元鑫, 周志荣, 等. 爆炸荷载下缺陷岩体的动态响应[J]. 岩石力学与工程学报, 2011, 30(6): 1157-1167.
    (ZHU Zhe-ming, LI Yuan-xin, ZHOU Zhi-rong, et al.Dynamic response of defected rock under blasting load[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1157-1167. (in Chinese))
    [19] ZHU Z M.Numerical prediction of crater blasting and bench blasting[J]. Int J Rock Mech Min Sci, 2009, 46: 1088-1096.
    [20] ZHU Z M, MOHANTY B, XIE H P.Numerical investigation of blasting-induced crack initiation and propagation in rocks[J]. Int J Rock Mech Min Sci, 2007, 44(3): 412-24.
    [21] ZHU Z M, XIE H P, MOHANTY B.Numerical investigation of blasting-induced damage in cylindrical rocks[J]. Int J Rock Mech Min Sci, 2008, 45(2): 111-121.
    [22] DONZE F V, BOUCHEZ J, MAGNIER S A.Modeling fractures in rock blasting[j]. Int J Rock Mech Min Sci, 1998, 34(8): 1153-1163.
    [23] BENDEZU M, ROMANEL C, ROEHL D.Finite element analysis of blast-induced fracture propagation in hard rocks[J]. Computers and Structures, 2017, 182: 1-13.
    [24] CHO S H, KANEKO K.Influence of the applied pressure waveform on the dynamics fracture processes in rock[J]. Int J Rock Mech Min Sci, 2004, 41(5): 771-784.
    [25] 杨仁树, 许鹏, 岳中文, 等. 圆孔缺陷与I型运动裂纹相互作用的试验研究[J]. 岩土力学, 2016, 37(6): 1598-1602.
    (YANG Ren-shu. XU Peng, YUE Zhong-wen, et al.Laboratory study of interaction between a circular hole defect and mode I moving crack[J]. Rock and Soil Mechanics, 2016, 37(6): 1598-1602. (in Chinese))
    [26] SHIH C F, LORENZI H G, GERMAN M D.Crack extension modeling with singular quadratic isoparametric element[J]. International Journal of Fracture, 1976, 12: 647-651.
    [27] CHEN L S, KUANG J H.A modified linear extrapolation formula for determination of stress intensity factor[J]. International Journal of Fracture, 1992, 54: R3-R8.
    [28] ROSE L R F. Recent theoretical and experimental results on fast brittle fracture[J]. International Journal of Fracture, 1976, 12(6): 799-813.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回