• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

悬挂式帷幕地铁深基坑变形特性研究

李方明, 陈国兴, 刘雪珠

李方明, 陈国兴, 刘雪珠. 悬挂式帷幕地铁深基坑变形特性研究[J]. 岩土工程学报, 2018, 40(12): 2182-2190. DOI: 10.11779/CJGE201812004
引用本文: 李方明, 陈国兴, 刘雪珠. 悬挂式帷幕地铁深基坑变形特性研究[J]. 岩土工程学报, 2018, 40(12): 2182-2190. DOI: 10.11779/CJGE201812004
LI Fang-ming, CHEN Guo-xing, LIU Xue-zhu. Deformation characteristics of suspended curtain deep foundation pit of metro lines[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2182-2190. DOI: 10.11779/CJGE201812004
Citation: LI Fang-ming, CHEN Guo-xing, LIU Xue-zhu. Deformation characteristics of suspended curtain deep foundation pit of metro lines[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2182-2190. DOI: 10.11779/CJGE201812004

悬挂式帷幕地铁深基坑变形特性研究  English Version

基金项目: 江苏省地质矿产勘查局基金项目(2015-KY-11)
详细信息
    作者简介:

    李方明(1975- ),男,博士,高级工程师,主要从事地下工程防灾减灾、地下空间的开发利用、桥梁隧道与古建筑结构检测和加固工作。E-mail: 184323102@qq.com。

  • 中图分类号: TU47;U45

Deformation characteristics of suspended curtain deep foundation pit of metro lines

  • 摘要: 基于江漫滩地铁深基坑的变形实测资料,采用理论分析、经验公式和有限元数值模拟方法,总结了悬挂式帷幕基坑变形规律,给类似工程设计和监测提供依据。结果表明:悬挂式帷幕基坑地表沉降曲线呈凹槽形,地表沉降考虑流固耦合作用大于不考虑流固耦合作用;地下连续墙的最终形态为内凸胀肚型,墙顶水平位移不完全是朝坑内移动,地下连续墙最大水平位移与基坑挖深的比值和全止水帷幕基坑差异不大,最大水平位移点深度位于坑底附近;由降水引起的地表沉降占总沉降量的比值约为0.54;地表沉降范围可以划分为主要影响区、次要影响区和微弱影响区;地表沉降曲线可根据影响分区选用不同的函数表达式;最大地表沉降点位置大于同等条件下全止水帷幕基坑约1.0~3.0 m。
    Abstract: Based on the actual deformation data of suspended curtain deep foundation pit of metro lines in flood plain areas, the deformation laws of the deep foundation pit are analyzed to provide a reference to the design and monitoring of similar projects by using the methods of theoretical analysis, empirical formulas and finite element numerical simulation. The results show that the distribution curve of the ground subsidence behind the suspended curtain takes a shape of groove. The ground subsidence considering fluid-structure interaction is greater than that without considering fluid-structure interaction. The final shape of the underground diaphragm wall is convex. The horizontal displacement of the wall at the top does not completely move to the pit. The ratio of the maximum horizontal displacement of the diaphragm wall to the excavation depth of the foundation pit is similar to the situation of the foundation pit with wholly used waterproof curtain. The depth of the maximum horizontal displacement point is near the bottom of the foundation pit. The ratio of the ground subsidence caused by precipitation to the total subsidence is about 0.54. The range of ground subsidence can be divided into strong, moderate and weak influence areas. The curve of ground subsidence in each influence area can thus use different functional expressions. The location of the maximum ground subsidence point is farther than that of the foundation pit with wholly used waterproof curtain about 1.0~3.0 m under the same conditions.
  • [1] PECK R B.Deep excavation and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, State-of-the-Art -Volume. Mexico City, 1969: 225-290.
    [2] MANA A I, CLOUGH G W.Prediction of movements for braced cuts in clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1981, 107(6): 759-777.
    [3] CLOUGH G W, O'ROURKE T D. Construction induced movements of in situ walls[C]// Proceedings, ASCE Conference on Design and Performance of Earth Retaining Structures, Geotechnical Special Publication No. 25. New York: ASCE, 1990: 439-470.
    [4] OU C Y, HSIEH P G, CHIOU D C.Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767.
    [5] HSIEH P G, OU C Y.Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.
    [6] LONG M.Database for retaining wall and ground movements due to deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(3): 203-224.
    [7] MOORMANN C.Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database[J]. Soils and Foundations, 2004, 44(1): 87-98.
    [8] LEUNG E H Y, NG C W W. Wall and ground movements associated with deep excavations supported by cast in situ wall in mixed ground conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2007, 133(2): 129-143.
    [9] 王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666.
    (WANG Wei-dong, XU Zhong-hua, WANG Jian-hua.Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1659-1666. (in Chinese))
    [10] 吴锋波, 金淮, 朱少坤. 北京市轨道交通基坑工程地表变形特性[J]. 岩土力学, 2016, 37(4): 1066-1074.
    (WU Feng-bo, JIN Huai. ZHU Shao-kun.Ground deformation characteristics of foundation pit related to the urban rail transit in Beijing[J]. Rock and Soil Mechanics, 2016, 37(4): 1066-1074. (in Chinese))
    [11] 李淑, 张顶立, 房倩, 等. 北京地铁车站深基坑地表变形特性研究[J]. 岩石力学与工程学报, 2012, 31(1): 189-198.
    (LI Shu, ZHANG Ding-li, FANG Qian, et al.Research on characteristics of ground surface deformation in Beijing subway[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 189-198. (in Chinese))
    [12] 王昆泰, 胡立强, 吕凯歌. 悬挂式帷幕条件下基坑渗流特性的计算分析[J]. 建筑科学, 2010, 26(1): 81-84.
    (WANG Kun-tai, HU li-qiang. LÜ Kai-ge. Analysis for seepage of deep foundation pit with hanging impervious purdah[J]. Building Science, 2010, 26(1): 81-84. (in Chinese))
    [13] 周火垚, 王华钦, 张维泉. 悬挂式止水在基坑工程中的应用[J]. 岩土工程学报, 2012, 34(增刊): 470-473.
    (ZHOU Huo-yao, WANG Hua-qin, ZHANG Wei-quan.Application of pensile impervious curtain to excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S0): 470-473. (in Chinese))
    [14] 张兴胜, 卢耀如, 王建秀, 等. 上海悬挂式地下连续墙基坑渗流侵蚀引起的沉降研究[J]. 岩土工程学报, 2014, 36(增刊2): 284-290.
    (ZHANG Xing-sheng, LU Yao-ru, WANG Jian-xiu, et al.Land subsidence caused by pits seepage erosion of deep foundation with suspended diaphragm walls in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 284-290. (in Chinese))
    [15] 薛丽影, 杨斌, 刘丰敏, 等. 基坑工程地下水渗流模型试验系统研究[J]. 岩土工程学报, 2017, 39(增刊1): 126-130.
    (XUE Li-ying, YANG Bin, LIU Feng-min, et al.Model test system for groundwater seepage in foundation pit engineering[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 126-130. (in Chinese))
    [16] JGJ 120—2012 建筑基坑支护技术规程[S]. 2012.
    (JGJ 120—2012 Technical speccification for retaining and protection of building foundation excavations[S]. 2012. (in Chinese))
    [17] 刘世涛, 程培峰. 基于ABAQUS土体数值分析的本构模型[J]. 低温建筑技术, 2010, 140(2): 90-92.
    (LIU Shi-tao, CHENG Pei-feng.Based on ABAQUS for numerical analysis of soil constitutive model[J]. Low Temperature Architecture Technology, 2010, 140(2): 90-92. (in Chinese))
    [18] 赵锡宏, 姜洪伟, 袁聚云, 等. 上海软土各向异性弹塑性模型[J]. 岩土力学, 2003, 24(3): 322-330.
    (ZHAO Xi-hong, JIANG Hong-wei, YUAN Ju-yun, et al.Anisotropically elastoplastic model of Shanghai soft soils[J]. Rock and Soil Mechanics, 2003, 24(3): 322-330. (in Chinese))
    [19] TAN Y, WANG D L.Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay: I Bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893.
    [20] TAN Y, WANG D L.Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay: II Top-down construction of the peripheral rectangular pit[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1894-1910.
    [21] WANG J H, XU Z H, WANG W D.Wall and ground movements due to deep excavations in Shanghai soft soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 985-994.
    [22] HASHASH Y M A, OSOULI A, MARULANDA C. Central artery/tunnel project excavation induced ground deformations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1399-1406.
    [23] DJ/TJ08—61—2010 基坑工程技术规程[S]. 2010.
    (DJ/TJ08—61—2010 Technical code for excavation engineering[S]. 2010. (in Chinese))
    [24] GB 50911—2013 城市轨道交通工程监测技术规范[S]. 2013. (GB 50911—2013 Code for monitoring measurement of urban rail transit engineering[S]. 2013. (in Chinese))
    [25] 刘国斌, 王卫东. 基坑工程手册[M]. 北京: 中国建筑工业出版社, 2009.
    (LIU Guo-bin, WANG Wei-dong.Excavation engineering handbook[M]. Beijing: China Architecture & Building Press, 2009. (in Chinese))
  • 期刊类型引用(7)

    1. 廖洁,刘斯宏,徐思远,樊科伟,于博文. 土工袋技术在乡村公路软基加固中的应用研究. 公路. 2024(06): 52-61 . 百度学术
    2. 李钒,林国兵,王雅华,樊科伟. 面板对土工袋挡土墙工作性状影响的足尺试验研究. 水电能源科学. 2023(06): 133-136 . 百度学术
    3. 关帅,孙嘉辉,刘越,王波,黄泽华. 纤维增强复合材料(FRP)锚索性能及其工程应用. 市政技术. 2023(08): 166-179 . 百度学术
    4. 曹旻昊. 淤泥质袋装土挡墙技术研究和应用分析. 现代交通技术. 2023(05): 93-96 . 百度学术
    5. 文华,杨青青,吴学宇,付文涛. 稳定固化土重力式挡土墙承载特性研究. 施工技术(中英文). 2022(20): 70-76 . 百度学术
    6. 黄英豪,吴敏,陈永,王硕,王文翀,武亚军. 絮凝技术在疏浚淤泥脱水处治中的研究进展. 水道港口. 2022(06): 802-812 . 百度学术
    7. 中国路基工程学术研究综述·2021. 中国公路学报. 2021(03): 1-49 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  411
  • HTML全文浏览量:  7
  • PDF下载量:  290
  • 被引次数: 12
出版历程
  • 收稿日期:  2017-09-24
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回