Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土工离心试验应力相似差异特征与设计准则

王永志, 王海, 袁晓铭, 段雪锋

王永志, 王海, 袁晓铭, 段雪锋. 土工离心试验应力相似差异特征与设计准则[J]. 岩土工程学报, 2018, 40(11): 2148-2154. DOI: 10.11779/CJGE201811023
引用本文: 王永志, 王海, 袁晓铭, 段雪锋. 土工离心试验应力相似差异特征与设计准则[J]. 岩土工程学报, 2018, 40(11): 2148-2154. DOI: 10.11779/CJGE201811023
WANG Yong-zhi, WANG Hai, YUAN Xiao-ming, DUAN Xue-feng. Difference characteristics of stress similitude for geotechnical centrifuge modelling and design criteria[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2148-2154. DOI: 10.11779/CJGE201811023
Citation: WANG Yong-zhi, WANG Hai, YUAN Xiao-ming, DUAN Xue-feng. Difference characteristics of stress similitude for geotechnical centrifuge modelling and design criteria[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2148-2154. DOI: 10.11779/CJGE201811023

土工离心试验应力相似差异特征与设计准则  English Version

基金项目: 中国地震局工程力学研究所基本科研业务费专项资助项目(2017B05); 国家自然科学基金项目(51609218); 黑龙江省自然科学基金(LC2015021)
详细信息
    作者简介:

    王永志(1984- ),男,副研究员,从事动力离心机试验理论、方法与技术研究工作。E-mail:yong5893741@163.com。

  • 中图分类号: TU411

Difference characteristics of stress similitude for geotechnical centrifuge modelling and design criteria

  • 摘要: 土工离心试验优越性的基础在于建立模型与原型相同的应力条件与分布,认识模型与原型之间应力相似差异与表征参数对控制系统误差和优化设计参数具有重要指导价值。引入总体分布应力、附加侧向应力和耦合动应力3个新概念与定义,对模型与原型之间应力差异特征、表征参数和设计准则等进行了深入研究。总体分布应力采用应力误差描述,表征参数为模型高度H和最大半径Rmax;当H/Rmax≤0.3和0.15,可控制模型极限应力误差≤10%和5%。附加侧向应力由模型中心剖面向两侧宽度增大分布,由模型宽度b、有效半径Ref和有效离心加速度aef决定大小;以100 kPa为标准,给出了不同离心加速度下有效半径与允许模型设计宽度关系。耦合动应力影响采用目标与额外应力比进行评价,以Ref和角速度ω为表征参数,给出了应力比以10%和20%为标准的aef-Ref的临界关系曲线;当aef≥10gRef≥4 m时,耦合动应力的影响可以忽略。研究提出的新概念、表征参数和设计准则,为改进设备、模型参数设计和推动量化研究提供研究基础与参考依据。
    Abstract: The advantage of geotechnical centrifuge modelling is founded on the exactly similar stress levels and distribution between models and prototypes. To recognize the differences and characterization parameters of stress similitude of model and prototype is of significant value to decreasing systematic errors and optimizing design parameters. Three new concepts of general distributed stress, additional lateral stress and coupling dynamic stress are proposed and defined, by using which the difference characteristics, characterization parameters and design principles of model stress compared to those of prototype are studied. The general distributed stress is represented by the stress error referring to the model height H and the maximum radius Rmax, and as H/Rmax≤0.3 and 0.15, the stress error limits of soil model are less than 10% and 5%. The magnitude of additional lateral stress increases from center section to two width boundaries, and is mainly governed by the model width b, effective radius Ref and effective centrifugal acceleration aef. Selecting 100 kPa as a criterion, the allowable model width limits with varying effective radius for different centrifugal accelerations are proposed. The influence of coupling dynamic stress is evaluated through the ratio of the target stress to the extra stress involving two key parameters of Ref and angular velocity ω. With 10% and 20% as the criteria of the stress ratio, the critical curves of aef-Ref are obtained and if aef≥10g and Ref≥4 m, the influence of coupling dynamic stress can be ignored. The proposed new concepts, characterization parameters and design criteria provide the reference and basis for the parametric design of facilities and soil models and development of quantitative researches.
  • [1] 汪闻韶. 土体液化与极限平衡和破坏的区别和关系[J]. 岩土工程学报, 2005, 27(1): 1-10.
    (WANG Wen-shao.Distinction and interrelation between liquefaction, state of limit equilibrium and failure of soil mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 1-10. (in Chinese))
    [2] 王永志, 大型动力离心机设计理论与关键技术研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013.
    (WANG Yong-zhi.Study on design theory and key technology of large dynamic centrifuge[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2013. (in Chinese))
    [3] KHOSRAVI M, BOULANGER R W, WILSON D W, et al.Dynamic centrifuge tests of soft clay reinforced by soil-cement grids[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(7): 1-13.
    [4] MASON H B, TROMBETTA N W, CHEN Z, et al.Seismic soil-foundation-structure interaction observed in geotechnical centrifuge experiments[J]. Soil Dynamics and Earthquake Engineering, 2013, 48: 162-174.
    [5] SCHOFIELD A N.Cambridge geotechnical centrifuge operation[J]. Géotechnique, 1980, 30(3): 227-268.
    [6] 朱维新. 土工离心模型试验研究状况[J]. 岩土工程学报, 1986, 8(2): 82-95.
    (ZHU Wei-xin.Centrifuge modelling for geotechnical engineering in the world[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(2): 82-95. (in Chinese))
    [7] 杜延龄. 土工离心模型试验基本原理及若干基本模拟技术研究[J]. 水利学报, 1993(8): 19-28, 36. (DU Yan-ling. Fundamental principle and some modelling techniques of geotechnical centrifugal model test[J]. Journal of Hydraulic Engineering, 1993(8): 19-28, 36. (in Chinese))
    [8] BORES R G, ALMEIDA M M S, ALMEIDA M C F, et al. Centrifuge modelling of a buried pipeline below an embankment[J]. International Journal of Physical Modeling in Geotechnics, 2014, 14(4): 116-127.
    [9] HUANG C Y, STARK C P, CAPART H, et al.Coriolis effects in granular flow experiments on a geotechnical centrifuge[C]// The 2nd Asian Conference on Physical Modelling in Geotechnics. Shanghai, 2016: 117-123.
    [10] TOBITA T, ASHINO T, REN J, et al.Effect of the radial gravity field on dynamic response of saturated sloping grounds in centrifuge model testing[J], Soil Dynamics and Earthquake Engineering, 2016.
    [11] 陈丛新. 边坡稳定离心模型试验中离心力分布不均匀的影响[J]. 岩土力学, 1994, 15(4): 39-45.
    (CHEN Cong-xin.The influence of nonuniform distribution of centrifugal force in the centrifugal model test of slope stability[J]. Rock and Soil Mechanics, 1994, 15(4): 39-45. (in Chinese))
    [12] 杨俊杰, 刘强, 柳飞, 等. 离心模型试验中离心加速度取值误差探讨[J]. 岩土工程学报, 2009, 31(2): 241-246.
    (YANG Jun-jie, LIU Qing, LIU Fei, et al.Discussion on error of centrifugal acceleration in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 241-246. (in Chinese))
    [13] DL/T 5102—2013 土工离心模型试验技术规程[S]. 2014.
    (DL/T 5102—2013 Specification for geotechnical centrifuge model test techniques[S]. 2014. (in Chinese))
    [14] GB/T50123—1999土工试验方法标准[S]. 1999.
    (GB/T50123—1999 Standard for soil test method[S]. 1999. (in Chinese))
    [15] GB50026—2007工程测量规范[S]. 2007. (GB 50026—2007 Code for engineering surveying[S]. 2007. (in Chinese))
    [16] BOULANGER R W, IDRISS I M.CPT-based liquefaction triggering procedure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 1-11.
    [17] BRANDENBERG S J, WILSON D W, RASHID M M.Weighted residual numerical differentiation algorithm applied to experimental bending moment data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 854-863.
    [18] CHIOU B S J, YONGS R R. An NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthquake Spectra, 2008, 24(1): 173-215.
计量
  • 文章访问数:  236
  • HTML全文浏览量:  7
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-06
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回