• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

上海陆家嘴地区超深大基坑邻近地层变形的实测分析

刘波

刘波. 上海陆家嘴地区超深大基坑邻近地层变形的实测分析[J]. 岩土工程学报, 2018, 40(10): 1950-1958. DOI: 10.11779/CJGE201810024
引用本文: 刘波. 上海陆家嘴地区超深大基坑邻近地层变形的实测分析[J]. 岩土工程学报, 2018, 40(10): 1950-1958. DOI: 10.11779/CJGE201810024
LIU Bo. Measurement and analysis of deformation of adjacent strata super deep and large foundation pits in Lujiazui District of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1950-1958. DOI: 10.11779/CJGE201810024
Citation: LIU Bo. Measurement and analysis of deformation of adjacent strata super deep and large foundation pits in Lujiazui District of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1950-1958. DOI: 10.11779/CJGE201810024

上海陆家嘴地区超深大基坑邻近地层变形的实测分析  English Version

基金项目: 上海市科学技术委员会科研计划项目(13231201006); 上海市科学技术委员会工程技术研究中心建设专项(15DZ2251300)
详细信息
    作者简介:

    刘 波(1985- ),男,山东济南人,硕士,工程师,主要从事软土地区超深大基坑的信息化监测研究工作。E-mail: liubo@sgidi.com。

  • 中图分类号: TU43

Measurement and analysis of deformation of adjacent strata super deep and large foundation pits in Lujiazui District of Shanghai

  • 摘要: 结合上海国际金融中心超大体量卸载、超深开挖深度、超长降水周期的基坑工程实践,通过对邻近地层变形的信息化监测,研究上海陆家嘴地区超深大基坑在顺逆作同步交叉实施条件下邻近地层的时空位移特征,初步探讨其变形机理和影响因素。研究表明:重车动载对坑外地表沉降影响较大,地墙隆起对0.1H范围内的地表土体拖带上抬;地表沉降主要受软弱土开挖和承压井降水影响凹槽分布,纵向地表沉降空间效应明显,受顺逆作同步交叉实施影响差异沉降突出;坑外地层侧移角部效应明显,形成水平方向的土拱作用,并与系统刚度和土体硬度呈正比;坑内土体强隆起范围远超开挖面下1倍挖深,立柱隆起在第三和第五层土方开挖时发展速率明显较快;坑外设计挖深上部地层以斜向下位移为主,下部地层以斜向上位移为主;基坑土方开挖阶段,坑内地层卸荷隆起为主流动补偿为辅,坑外设计挖深以上地层土体流动补偿和承压井降水固结沉降均显著,而设计挖深以下地层以卸荷隆起为主兼有少量流动补偿。
    Abstract: Considering the building foundation pits of Shanghai International Financial Center with oversize unloading, ultra-deep excavation depth and super-long dewatering cycle of confined water and based on the informative monitoring of deformation of the adjacent strata for the super deep and large foundation pits, the time-space deformation features are studied for the super deep and large foundation pits by synchronous cross-excavation of the bottom-up and the top-down construction methods in Lujiazui District of Shanghai, and the mechanism and influencing factors are preliminarily discussed. It is shown that the surface ground settlement is obviously affected by the vehicle dynamical loads and the surface strata under the zone of 0.1H is uplifted by the rebound deformation of retaining walls. The distribution of the surface settlements seems to be grooved due to the excavation of soft soils and the dewatering of confined water. The spatial effects of the longitudinal settlements are uncommon and the differential deformation is prominently under the construction plan. The corner effect of the horizontal displacement in deep strata is strong, while the horizontal soil arch is formed and is proportional with the system stiffness and soil hardness. The influence zone of the powerful upheaval in the bottom can exceed a distance of about 1.0H from the excavation surface, where H is the final excavation depth, and the development rate of the column uplift is significantly faster at the third and fifth layers of soils at the excavation stage. The upper strata of the design excavation depth outside the wall are mainly oblique downward displacements, and the lower strata are mainly oblique upward ones. During the earth excavation, the upheaval in the bottom is mainly composed of unloading uplift and is ancillary by flow compensation of strata, and the upper strata of the design excavation depth outside the wall are significantly influenced by flow compensation of strata and consolidation settlement of the dewatering of confined water, while the lower strata are mainly caused by the upload rebound and a small amount of flow compensation.
  • [1] 郑刚, 朱合华, 杨光华. 基坑工程与地下工程安全及环境影响控制[J]. 土木工程学报, 2016, 49(6): 1-24.
    (ZHENG Gang, ZHU He-hua, YANG Guang-hua.Control of safety of deep excavations and underground engineering and its impact on surrounding environment[J]. China Civil Engineering Journal, 2016, 49(6): 1-24. (in Chinese))
    [2] 刘建航, 侯学渊. 基坑工程手册[M]. 北京: 中国建筑工业出版社, 1997.
    (LIU Jian-hang, HOU Xue-yuan.Excavation engineering handbook[M]. Beijing: China Architecture & Building Press, 1997. (in Chinese))
    [3] 吴念祖. 上海虹桥综合交通枢纽超深大基坑工程建设与实践[J]. 建筑施工, 2010, 32(7): 609-610.
    (WU Nian-zu.Construction and practice of super deep and large foundation pit of Shanghai Hongqiao integrated transportation hub[J]. Building Construction, 2010, 32(7): 609-610. (in Chinese))
    [4] 瞿成松. 上海地铁四号线董家渡修复段基坑降水实录[J]. 岩土工程学报, 2010(增刊2): 339-342.
    (QU Chen-song.Dewatering of the Dongjiadu tunnel restoration on Shanghai metro line 4[J]. Chinese Journal of Geotechnical Engineering, 2010(S2): 339-342. (in Chinese))
    [5] 贾坚, 谢小林, 等.“上海中心”圆形基坑明挖顺作的安全稳定和控制[J]. 岩土工程学报, 2010(增刊1): 370 -376. (JIA Jian, XIE Xiao-lin, et al. Safe and stability control of circular foundation pit of Shanghai Tower[J]. Chinese Journal of Geotechnical Engineering, 2010(S1): 370-376. (in Chinese))
    [6] 贾坚, 谢小林. 上海软土地区深大基坑的卸荷变形及控制[J]. 岩土工程学报, 2008(增刊1): 376-380.
    (JIA Jian, XIE Xiao-lin.Deformation and control measures of deep and large foundation pits in Shanghai soft c1ay area[J]. Chinese Journal of Geotechnical Engineering, 2008(S1): 376-380. (in Chinese))
    [7] 吕少伟. 上海地铁车站施工周围土体位移场预测及控制技术研究[D]. 上海: 同济大学, 2001.
    (LÜ Shao-wei.Prediction and controlling of displacement surrounding Shanghai metro station[D]. Shanghai: Tongji University, 2001. (in Chinese))
    [8] 李亚. 基坑周围土体位移场的分析与动态控制[D].上海:同济大学, 1999.
    (LI Ya.Analysis of displacement filed around the foundation pit and dynamic control[D]. Shanghai: Tongji University, 1999. (in Chinese))
    [9] 杨骏, 李夫杰, 杨育僧. 软土地区地铁车站深基坑施工坑外土体位移规律研究[J]. 太原理工大学学报, 2015, 46(5): 542-547.
    (YANG Jun, LI Fu-jie, YANG Yu-seng.Research on the soil displacement outside the construction pit of deep foundation pit in subway station in soft soil area[J]. Journal of Taiyuan University of Technology, 2015, 46(5): 542-547. (in Chinese))
    [10] 王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011(11): 1659-1666.
    (WANG Wei-dong, XU Zhong-hua, WANG Jian-hua.Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011(11): 1659-1666. (in Chinese))
    [11] PECK R B.Deep excavation and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, State-of-the-Art- Volume. Mexico City, 1969: 225-290.
    [12] 应宏伟, 王奎华, 谢康和, 等. 杭州解百商业城半逆作法深基坑支护设计与监测[J]. 岩土工程学报, 2001, 23(1): 79-83.
    (YING Hong-wei, WANG Kui-hua, XIE Kang-he, et al.Design and monitoring of deep excavation with semi-top- down method in Hangzhou Jiebai commercial building[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 79-83. (in Chinese))
    [13] 应宏伟, 杨永文. 杭州深厚软黏土中某深大基坑的性状研究[J]. 岩土工程学报, 2011(12): 1838-1846.
    (YING Hong-wei, YANG Yong-wen.Characteristics of a large and deep soft clay excavation in Hangzhou[J]. Chinese Journal of Geotechnical Engineering, 2011(12): 1838-1846. (in Chinese))
    [14] 邓指军, 贾坚. 地铁车站深基坑卸荷回弹影响深度的试验[J]. 城市轨道交通研究, 2008(3): 52-55.
    (DENG Zhi-jun, JIA Jian.On unloading resilience depth in deep station foundation pit[J]. Urban Mass Transit, 2008(3): 52-55. (in Chinese))
  • 期刊类型引用(4)

    1. 冉志红,董国华,杨子富,林帆. 基于经验频率分布的偏态概率模型可靠度计算方法研究. 四川建筑科学研究. 2024(01): 52-59 . 百度学术
    2. 易顺,潘家军,王艳丽,徐晗,白强强,杨志勇. 基坑地表沉降的偏态分布函数应用. 长江科学院院报. 2024(08): 135-141+179 . 百度学术
    3. 周勇,王延凯,王正振,王宁. 考虑局部超载下的桩锚支护结构变形分析. 科学技术与工程. 2021(14): 5943-5950 . 百度学术
    4. 赵平,韩治勇. 深基坑开挖引起的地表竖向变形分析. 安徽科技学院学报. 2021(06): 112-118 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  463
  • HTML全文浏览量:  9
  • PDF下载量:  430
  • 被引次数: 14
出版历程
  • 收稿日期:  2017-07-20
  • 发布日期:  2018-10-24

目录

    /

    返回文章
    返回