• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

层状围岩中管片衬砌受力特征的模型试验研究

胡雄玉, 杨清浩, 何川, 曹淞宇

胡雄玉, 杨清浩, 何川, 曹淞宇. 层状围岩中管片衬砌受力特征的模型试验研究[J]. 岩土工程学报, 2018, 40(10): 1773-1781. DOI: 10.11779/CJGE201810003
引用本文: 胡雄玉, 杨清浩, 何川, 曹淞宇. 层状围岩中管片衬砌受力特征的模型试验研究[J]. 岩土工程学报, 2018, 40(10): 1773-1781. DOI: 10.11779/CJGE201810003
HU Xiong-yu, YANG Qing-hao, HE Chuan, CAO Song-yu. Experimental study on behaviors of segment linings in an anisotropically jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1773-1781. DOI: 10.11779/CJGE201810003
Citation: HU Xiong-yu, YANG Qing-hao, HE Chuan, CAO Song-yu. Experimental study on behaviors of segment linings in an anisotropically jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1773-1781. DOI: 10.11779/CJGE201810003

层状围岩中管片衬砌受力特征的模型试验研究  English Version

基金项目: 国家重点研发计划项目(2016YFC0802201); 国家自然科学基金项目(U1361210); 2016年度西南交通大学博士研究生创新基金项目(13017019)
详细信息
    作者简介:

    胡雄玉(1989- ),男,博士研究生,主要从事盾构隧道技术方面的研究工作。E-mail: 564291084@qq.com。

    通讯作者:

    何川,E-mail:chuanhe12@163.com

  • 中图分类号: TU451

Experimental study on behaviors of segment linings in an anisotropically jointed rock mass

  • 摘要: 深部层状围岩结构强度具有各向异性特点,此类地层中修建盾构隧道,管片衬砌易受偏压作用,对结构安全构成挑战。开展层状围岩与盾构管片衬砌相互作用关系的相似模型试验研究,研究不同层理倾角下管片衬砌壁后围岩压力、管片衬砌内力和变形分布规律。研究结构表明:管片衬砌受力和变形特征受层理面控制明显,管片衬砌受力极不均匀,弯矩、轴力和变形呈现非对称分布;管片衬砌壁后围岩压力最大值集中在强度最弱的层理面法线方向,该方向上管片衬砌的弯矩最大,轴力最小,变形最大;层理倾角对管片衬砌的受力和变形影响显著,层理倾角不仅影响管片衬砌壁后围岩压力分布形状还影响其量值大小;均质地层中,管片衬砌裂缝主要出在封顶块接头处和其他环向接头处,层状地层中管片衬砌裂缝出现位置受接头位置影响减弱,而受层理倾角影响明显,管片衬砌裂缝出现位置主要集中在层理面法向。研究结果对层状围岩中修建盾构隧道的支护结构型式设计具有一定参考价值。
    Abstract: As the structural strength in the deep layered rock is of anisotropic characteristics, the segment lining is susceptible to unsymmetrical pressure when the shield tunnel is constructed in such formations. Similar model tests are carried out to study the interaction between layered surrounding rock and shield segment lining, and the pressures on the surrounding rock behind the segment lining, internal forces and deformations of the segment lining are investigated. The research results indicate that the stress and deformation characteristics of the segment lining are obviously controlled by bedding plane, the segment lining is pressed very unevenly, and the axial forces, bending moments and deformations exhibit asymmetrical distribution. The maximum pressures on the surrounding rock behind the segment lining are concentrated in the normal direction of the weakest plane, and in this direction, the bending moments of the segment lining are the largest, the axial forces are the smallest and the deformations are the largest. The bedding angle has significant influence on the stress and deformation of the segment lining as well as the distribution and size of pressures on the surrounding rock. In the homogeneous surrounding rock, the fractures of the segment lining are mainly located at the joints of the key segment and other annular joints, while in the layered surrounding rock, the location of fractures of the segment lining is weakened by the influence of the position of joints, and the influence of the bedding dip is obvious. The location of fractures of the segment lining is mainly concentrated in the normal direction of the weakest plane. The results of this study have certain reference value for the design of the supporting structure type of shield tunnels in layered surrounding rock.
  • [1] 彭焱森. 陡倾层状岩体隧道开挖稳定性研究[D]. 重庆: 重庆交通大学, 2012.
    (PENG Yan-sen.Study on the stabilization of excavating the steep-dipping rock mass Tunnel[D]. Chongqing:Chongqing Jiaotong University, 2012. (in Chinese))
    [2] 刘恺德, 刘泉声, 朱元广, 等. 考虑层理方向效应煤岩巴西劈裂及单轴压缩试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 308-316.
    (LIU Kai-de, LIU Quan-sheng, ZHU Yuan-guang, et al.Experimental study of coal considering directivity effect of bedding plane under brazilian splitting and uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 308-316. (in Chinese))
    [3] 朱永全, 李文江, 赵勇. 软弱围岩隧道稳定性变形控制技术[M]. 北京: 人民交通出版社, 2012.
    (ZHU Yong-quan, LI Wen-jiang, ZHAO Yong.Deformation control technology of weak surrounding rock tunnel stability[M]. Beijing: China Communications Press, 2012. (in Chinese)
    [4] RAMAMURTHY T, VENKATAPPA G R, SINGH J.Engineering behavior of phyllite[J]. Eng Geol, 1993, 169: 80-90.
    [5] CHO J W, KIM H, JEON S, et al.Deformation and strength anisotropy of Asan gneiss, Boryeongshale, and Yeoncheon schist[J]. Int J Rock Mech Min Sci, 2012, 50: 158-169.
    [6] KARAKUL H, ULUSAY R, ISIK N S.Empirical models and numerical analysis for assessing strength anisotropy based on block punch index and uniaxial compression tests[J]. Int J Rock Mech Min Sci, 2010, 47: 657-665.
    [7] 侯鹏, 高峰, 杨玉贵, 等. 考虑层理影响页岩巴西劈裂及声发射试验研究[J]. 岩土力学, 2016, 37(6): 1603-1612.
    (HOU Peng, GAO Feng, YANG Yu-gui, et al.Effect of bedding plane direction on acoustic emission characteristics of shale in Brazilian tests[J]. Rock and Soil Mechanics, 2016, 37(6): 1603-1612. (in Chinese))
    [8] 沙鹏, 伍法权, 李响, 等. 高地应力条件下层状地层隧道围岩挤压变形与支护受力特征[J]. 岩土力学, 2015, 36(5): 1407-1414.
    (SA Peng, WU Fa-quan, LI Xiang, et al.Squeezing deformation in layered surrounding rock and force characteristics of support system of a tunnel under high in-situ stress[J]. Rock and Soil Mechanics, 2015, 36(5): 1407-1414. (in Chinese))
    [9] 夏彬伟. 深埋隧道层状岩体破坏失稳机理实验研究[D]. 重庆: 重庆大学, 2009.
    (XIA Bin-wei.Experimental study on the mechanism of instability of layered rock mass in deep tunnel[D]. Chongqing: Chongqing University, 2009. (in Chinese))
    [10] 李晓红, 夏彬伟, 李丹, 等. 深埋隧道层状围岩变形特征分析[J]. 岩土力学, 2010, 31(4): 1163-1167.
    (LI Xiao-hong, XIA Bin-wei, LI Dan, et al.Deformation characteristics analysis of layered rockmass in deep buried tunnel[J]. Rock and Soil Mechanics, 2010, 31(4): 1163-1167. (in Chinese))
    [11] 李树忱, 马腾飞, 蒋宇静. 深部多裂隙岩体开挖变形破坏规律模型试验研究[J]. 岩土工程学报, 2016, 38(6): 987-995.
    (LI Shu-chen, MA Teng-fei, JIANG Yu-jing, et al.Model tests on deformation and failure laws in excavation of deep rock mass with multiple fracture sets[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 987-995. (in Chinese))
    [12] 杨松林, 朱焕春, 刘祖德. 加锚层状岩体的本构模型[J]. 岩土工程学报, 2001, 23(4): 427-430.
    (YANG Song-lin, ZHU Huan-chun, LIU Zu-de.A new constitutive model of the layered rock mass reinforced with bolts[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 427-430. (in Chinese))
    [13] 马腾飞, 李树忱, 李术才, 等. 考不同倾角多层节理深部岩体开挖变形破坏规律模型试验研究[J]. 岩土力学, 2016, 37(10): 2899-2908.
    (MA Teng-fei, LI Shu-chen, LI Shu-cai, et al.Model experimental study of deformation and failure law in excavation of deep rock mass with multi-cleftiness of different angles[J]. Rock and Soil Mechanics, 2016, 37(10): 2899-2908. (in Chinese))
    [14] BOSSART P, WERMEILLE S.The stress field in the Mont Terri region-data compilation[M]. Bern: Swiss Geological Survey, 2003: 65-92.
    [15] BLÜMLING P, BERNIER F, LEBON P, et al. The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment[J]. Phys Chem Earth Parts A/B/C, 2007, 32: 588-599.
    [16] FORTSAKIS P, NIKAS K, MARINOS V, et al.Anisotropic behaviour of stratified rock masses in tunnelling[J]. Engineering Geology, 2012(141/142): 74-83.
    [17] SAGONG M, PARK D, YOO J, et al.Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(7): 1055-1067.
    [18] 地盘工学会.シールドトンネルの新技術[M]. 东京: 鹿岛出版社, 1997.
    (Research Association on New Shield Tunnology. New technology in shield tunneling[M]. Tokyo: Kajima Institute Publishity Co. Ltd. 1997. (in Japanese))
    [19] 王士民, 于清洋, 彭博, 等. 封顶块位置对盾构隧道管片结构力学特征与破坏形态的影响分析[J]. 土木工程学报, 2016, 49(6): 123-132.
    (WANG Shi-min, YU Qing-yang, PENG Bo, et al.Analysis of mechanical characteristics and failure pattern of shield tunnel segment with different position of key block[J]. China Civil Engineering Journal, 2016, 49(6): 123-132. (in Chinese))
计量
  • 文章访问数:  320
  • HTML全文浏览量:  5
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-15
  • 发布日期:  2018-10-24

目录

    /

    返回文章
    返回