• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深井富水工作面“动—静”应力效应诱发冲击地压机理研究

李东, 姜福兴, 陈洋, 舒凑先, 田昭军, 王永, 王维斌

李东, 姜福兴, 陈洋, 舒凑先, 田昭军, 王永, 王维斌. 深井富水工作面“动—静”应力效应诱发冲击地压机理研究[J]. 岩土工程学报, 2018, 40(9): 1714-1722. DOI: 10.11779/CJGE201809019
引用本文: 李东, 姜福兴, 陈洋, 舒凑先, 田昭军, 王永, 王维斌. 深井富水工作面“动—静”应力效应诱发冲击地压机理研究[J]. 岩土工程学报, 2018, 40(9): 1714-1722. DOI: 10.11779/CJGE201809019
LI Dong, JIANG Fu-xing, CHEN Yang, SHU Cou-xian, TIAN Zhao-jun, WANG Yong, WANG Wei-bin. Mechanism of rockburst induced by “dynamic-static” stress effect in water-rich working face of deep well[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1714-1722. DOI: 10.11779/CJGE201809019
Citation: LI Dong, JIANG Fu-xing, CHEN Yang, SHU Cou-xian, TIAN Zhao-jun, WANG Yong, WANG Wei-bin. Mechanism of rockburst induced by “dynamic-static” stress effect in water-rich working face of deep well[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1714-1722. DOI: 10.11779/CJGE201809019

深井富水工作面“动—静”应力效应诱发冲击地压机理研究  English Version

详细信息
    作者简介:

    李 东(1985- ),男,博士,主要从事矿山压力方面的研究工作。E-mail: lidong20150041@163.com。

  • 中图分类号: TU47

Mechanism of rockburst induced by “dynamic-static” stress effect in water-rich working face of deep well

  • 摘要: 冲击地压的发生是一个多因素诱发的结果。以郓城煤矿1301工作面为工程背景,研究“动—静”应力效应诱发的(“动”指工作面回采时,上覆岩层运动对前方煤体施加超前支承压力及扰动;“静”指水仓突水后,煤层上方相当于开采一个解放层,突水区域上覆岩层部分应力向周边转移,使突水区域周边的静应力升高)新型冲击地压发生的机理,本文采用采用理论分析、现场监测、工程试验、数值模拟等方法研究了冲击地压发生的应力来源、突水造成的煤体岩性改变特征、工作面回采的动态影响等,得出以下结论:①突水打破了原岩应力平衡,使其周边煤体静应力升高,这是冲击地压发生的静应力来源。②煤体浸水30天,使煤体的强度大幅降低,使其在同等应力作用下增大了“蠕变”冲击发生的风险。③1301工作面回采,超前支承压力是发生冲击地压的动应力来源;超前支承压力与高静应力叠加,增大了应力的集中程度,再加上上覆岩层对高应力集中区的动态扰动,使冲击地压发生的风险进一步加大。该方法对于富水工作面的防冲评价具有重要的参考意义。
    Abstract: The occurrence of rockburst is a result of multi-factor induction. Taking coal face No. 1301 of Yuncheng Coal Mine as the engineering background, the mechanism of new rockburst induced by the "dynamic-static" stress effect is investigated ("dynamic" refers to that during mining of the working face, the movement of the overlying strata applies advanced support pressures and disturbance on the coal body in front of them; "static"refers to that after water inrush of the water storehouse, the part above the coal seam is equivalent to mining a liberated layer, and part of the stresses on the overlying strata transfers to the surrounding in the water inrush areas, and makes the static stress surrounding the water inrush areas increase). The stress source of rockburst, the lithological change characteristics of coal body caused by inrush water and the dynamic influence of mining face are studied by using theoretical analysis, field detection, engineering tests and numerical simulation. The following conclusions are drawn: (1) The inrush water breaks the stress balance of the original rock and causes high static stress around it, which is the static stress source of rockburst. (2) After 30 days of soaking, the strength of coal is greatly reduced, which increases the risk of rockburst under the same stress. (3) For mining of working face No. 1301, the advanced support pressure is the source of dynamic stress of rockburst. The superposition of advanced bearing pressure and high static stress increase the concentration of stress, and the dynamic disturbance of overlying strata to high-stress concentration areas further increases the risk of rockburst. The proposed method is of important reference significance for the anti-impact evaluation of water-rich working face.
  • [1] 姜福兴. 采场覆岩空间结构观点及应用研究[J]. 采矿与安全工程学报, 2006, 23(1): 30-33.
    (JIANG Fu-xing.Viewpoint of spatial structures of overlying strata and its application in coalmine[J]. Journal of Mining & Safety Engineering, 2006, 23(1): 30-33. (in Chinese))
    [2] 史红, 姜福兴. 充分采动阶段覆岩多层空间结构支承压力研究[J]. 煤炭学报, 2009, 34(5): 605-609.
    (SHI Hong, JIANG Fu-xing.The dynamic abutment pressure rule of overlying strata spatial structures at the phases sub-critical mining[J]. Journal of China Coal Society, 2009, 34(5): 605-609. (in Chinese))
    [3] 姜福兴, 杨淑华. 采场覆岩空间破裂与采动应力场的微震探测研究[J]. 岩土工程学报, 2003, 25(1): 23-25.
    (JIANG Fu-xing, YANG Shu-hua.Microseismicmonito ring study o n spatial structure of overlying strata and mining pressure field in longw all face[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 23-25. (in Chinese))
    [4] 宋振骐, 卢国志, 夏洪春. 一种计算采场支承压力分布的新算法[J]. 山东科技大学学报(自然科学版), 2006, 25(1): 1-4.
    (SONG Zhen-qi, LU Guo-zhi, XIA Hong-chun.A new algorithm for calculating the distribution of face abutment pressure[J]. Journal of Shandong University of Science and Technology (Natural Science), 2006, 25(1): 1-4. (in Chinese))
    [5] 夏永学, 蓝航, 毛德兵, 等. 基于微震监测的超前支承压力分布特征研究[J]. 中国矿业大学学报, 2011, 40(6): 868-873.
    (XIA Yong-xue, LAN Hang, MAO De-bing, et al.Study of the lead abutment pressure distribution base on microseismic monitoring[J]. Journal of Chian University of Mining & Technology, 2011, 40(6): 868-873. (in Chinese))
    [6] 刘金海, 姜福兴, 王乃国, 等. 深井特厚煤层综放工作面支承压力分布特征的实测研究[J]. 煤炭学报, 2011, 36(增刊1): 18-22.
    (LIU Jin-hai, JIANG Fu-xing, WANG Nai-guo, et al.Survey on abutment pressure distribution of fully mechanized caving face in extra-thick coal seam of deep shaft[J]. Journal of China Coal Society, 2011, 36(S1): 18-22. (in Chinese))
    [7] 齐庆新, 欧阳振华, 赵善坤, 等. 我国冲击地压矿井类型及防治方法研究[J]. 煤炭科学技术, 2014, 42(10): 1-5.
    (QI Qing-xin, OUYANG Zhen-hua, ZHAO Shan-kun, et al.Study on types of rockburst mine and prevention methods in China[J]. Coal Scienceand Technology, 2014, 42(10): 1-5. (in Chinese))
    [8] 潘俊锋, 宁宇, 毛德兵, 等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报, 2012, 31(3): 586-596.
    (PAN Jun-feng, NING Yu, MAO De-bing, et al.Theory of rockburst start-up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 586-596. (in Chinese))
    [9] 张开智, 夏均民. 冲击危险性综合评价的变权识别模型[J]. 岩石力学与工程学报, 2004, 23(20): 3480-3483.
    (ZHANG Kai-zhi, XIA Jun-min.Weight-variable identification model of comprehensive evaluation on burst liability of coal[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3480-3483. (in Chinese))
    [10] 刘金海, 姜福兴, 冯涛. C型采场支承压力分布特征的数值模拟研究[J]. 岩土力学, 2010, 31(12): 4011-4015.
    (LIU Jin-hai, JIANG Fu-xing, FENG Tao.Numerical simulation of abutment pressure distribution of C-shaped stope[J]. Rock and Soil Mechanics, 2010, 31(12): 4011-4015. (in Chinese))
    [11] 刘长友, 黄炳香, 孟祥军, 等. 超长孤岛综放工作面支承压力分布规律研究[J]. 岩石力学与工程学报, 2007, 26(增1): 2761-2766.
    (LIU Chang-you, HUANG Bing-xiang, MENG Xiang-jun, et al.Research on abutment pressure distribution law of overlength isolated fully-mechanized top coal caving face[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2761-2766. (in Chinese))
    [12] 司荣军, 王春秋, 谭云亮. 采场支承压力分布规律的数值模拟研究[J]. 岩土力学, 2007, 28(2): 351-354.
    (SI Rong-jun, WANG Chun-qiu, TAN Yun-liang.Numerical simulation of abutment pressure distribution laws of working faces[J]. Rock and Soil Mechanics, 2007, 28(2): 351-354. (in Chinese))
    [13] 伍永平, 高喜才, 解盘石, 等. 坚硬特厚煤层顶分层综采工作面支承压力分布特征研究[J]. 矿业安全与环保, 2010, 37(4): 8-10.
    (WU Yong-ping, GAO Xi-cai, XIE Pan-shi, et al.Research on abutment pressure distribution law in fully mechanized caving face on top slice of hard and very thick seam[J]. Mining Safety & Environmental Protection, 2010, 37(4): 8-10. (in Chinese))
    [14] 姜福兴, 马其华. 深部长壁工作面动态支承压力极值点的求解[J]. 煤炭学报, 2002, 27(3): 273-275.
    (JIANG Fu-xing, MA Qi-hua.Mechanical solution of the maximum point of dynamic abutment pressure under deep long-wall working face[J]. Journal of China Coal Society, 2002, 27(3): 273-275. (in Chinese))
  • 期刊类型引用(5)

    1. 杨尚,宁建国,王俊,高明涛,史新帅,张朝辉. 动载作用下锚固体动态失稳试验研究. 岩石力学与工程学报. 2025(02): 409-426 . 百度学术
    2. 常聚才,郭钇君,吴博文,史文豹,齐潮,王宏达. 深部沿空掘巷含软弱夹层顶板离层破坏特征及控制研究. 煤炭科学技术. 2024(09): 88-102 . 百度学术
    3. 刘玉宾,朱斯陶,张修峰,王绪友,李增强,周均忠,张斌,王高昂. 厚煤层掘进工作面强震动诱发底煤卸压失效机理研究. 采矿与岩层控制工程学报. 2024(05): 107-118 . 百度学术
    4. 李青海,张浩然,纪永虎,马小勇,张存智. 深部巷道预应力锚固防冲作用机制研究. 采矿与岩层控制工程学报. 2024(06): 78-88 . 百度学术
    5. 胡斌,曹建军,王泽祺,李京,张峻珲,徐心语. 冲击扰动下泥页岩剪切蠕变试验及蠕变损伤模型研究. 煤炭学报. 2024(S2): 900-910 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  232
  • HTML全文浏览量:  5
  • PDF下载量:  145
  • 被引次数: 12
出版历程
  • 收稿日期:  2018-02-08
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回