川西松潘上窑沟古滑坡复活特征及危险性预测研究

    吴瑞安, 张永双, 郭长宝, 杨志华, 任三绍, 陈鹏

    吴瑞安, 张永双, 郭长宝, 杨志华, 任三绍, 陈鹏. 川西松潘上窑沟古滑坡复活特征及危险性预测研究[J]. 岩土工程学报, 2018, 40(9): 1659-1667. DOI: 10.11779/CJGE201809012
    引用本文: 吴瑞安, 张永双, 郭长宝, 杨志华, 任三绍, 陈鹏. 川西松潘上窑沟古滑坡复活特征及危险性预测研究[J]. 岩土工程学报, 2018, 40(9): 1659-1667. DOI: 10.11779/CJGE201809012
    WU Rui-an, ZHANG Yong-shuang, GUO Chang-bao, YANG Zhi-hua, REN San-shao, CHEN Peng. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659-1667. DOI: 10.11779/CJGE201809012
    Citation: WU Rui-an, ZHANG Yong-shuang, GUO Chang-bao, YANG Zhi-hua, REN San-shao, CHEN Peng. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659-1667. DOI: 10.11779/CJGE201809012

    川西松潘上窑沟古滑坡复活特征及危险性预测研究  English Version

    基金项目: 国家自然科学基金重点项目(41731287); 中国地质调查局项目(DD20160271)
    详细信息
      作者简介:

      吴瑞安(1991- ),男,博士研究生,主要从事工程地质与地质灾害方面的研究工作。E-mail:wuruian1991@126.com。

      通讯作者:

      张永双,E-mail:zhys100@sohu.com

    • 中图分类号: TU457

    Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province

    • 摘要: 随着近年来人类活动加剧和极端天气的频繁出现,古滑坡复活问题日益突出,严重威胁着工程设施和城镇安全。以青藏高原东缘松潘县上窑沟古滑坡为例,在剖析古滑坡复活特征的基础上,分析了不同重现期降雨条件下滑坡的破坏范围和失稳概率,并采用DAN3D软件模拟研究了滑坡运动过程和堆积范围,开展了古滑坡复活的危险性预测评价。结果表明:①受坡脚浸润侵蚀和强降雨的影响,上窑沟古滑坡前缘局部H1已经复活,呈现出多级序、多期次活动的特点,目前地表宏观变形迹象清晰,存在进一步失稳可能;②H1在20 a一遇的10 d连阴雨条件下处于不稳定状态,失稳概率达99.12%,而后部的H2在100 a一遇10 d连阴雨条件下处于不稳定状态,失稳概率达96.36%,可能和前部H1发生连续失稳下滑;③仅前缘局部H1失稳时,滑体最远运移距离约350 m,堆积体前缘不会抵达居民区;④当后部H2和前部H1连续失稳时,滑体最远运移距离达550 m,沟口居民区的排导槽首端至国道G213间半径约150 m的扇形区遭受滑坡-碎屑流的危险性大。
      Abstract: Affected by the intensifying human activities and frequent occurrence of extreme climate in recent years, the problem of ancient landslide reactivation is increasingly prominent, threatening the local engineering facilities and urban security. Based on the Shangyaogou ancient landslide in the east margin of the Tibetan Plateau, the reactivation characteristics are analyzed, and the instability probability of the landslide under different rainfall conditions for return period is calculated. In addition, DAN3D software is used to simulate the movement process and accumulation scope of the sliding mass, and assess the landslide hazard. The results show that: (1) A local part H1 has been reactivated in the front of the ancient landslide due to heavy rainfall and foot erosion, presenting the activity characteristics of multi-stage and multi-period. At present, the deformations on the slope are obvious, and have a potential for further instability. (2) H1 is in an unstable state under the condition of 20 years of continuous rainfall in 10 days with the instability probability of 99.12%. The posterior part H2 is highly likely to follow H1 and move downslope under the condition of 100 years of continuous rainfall in 10 days with the instability probability of 96.36%. (3) The farthest movement distance is about 350 m when only the reactivated part H1 moves, and the forefront of the landslide deposits will not reach the residential areas. (4) When the posterior part H2 moves following the reactivated part H1, the farthest movement distance is about 550 m. For the residential areas, the fan area from the head of the drainage channel to the national road G213 with a radius of about 150 m is considered to have a high hazard risk of landslide-debris flow.
    • [1] 杨为民, 黄晓, 张永双, 等. 甘肃南部坪定—化马断裂带滑坡变形特征及其防治[J]. 地质通报, 2013, 32(12): 1925-1935.
      (YANG Wei-ming, HUANG Xiao, ZHANG Yong-shuang, et al.The deformation characteristics of the landslide along Pingding-Huama active fault zone and its prevention and control[J]. Geological Bulletin of China, 2013, 32(12): 1925-1935. (in Chinese))
      [2] 李明辉, 郑万模, 石胜伟, 等. 丹巴县甲居滑坡复活机制及其稳定性分析[J]. 山地学报, 2008, 26(5): 577-582.
      (LI Ming-hui, ZHENG Wan-mo, SHI Sheng-wei, et al.The revival mechanism and stability analysis to Jiaju landslide of Danba county in Sichuan province[J]. Journal of Mountain Science, 2008, 26(5): 577-582. (in Chinese))
      [3] 张永双, 郭长宝, 周能娟. 金沙江支流冲江河巨型滑坡及其局部复活机理研究[J]. 岩土工程学报, 2013, 35(3): 445-453.
      (ZHANG Yong-shuang, GUO Chang-bao, ZHOU Neng-juan.Characteristics of Chongjianghe landslide at a branch of Jinsha River and its local reactivation mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 445-453. (in Chinese))
      [4] CRUDEN D M, VARNES D J.Landslide types and processes, special report, transportation research board[J]. National Academy of Sciences, 1996, 247: 36-75.
      [5] BURDA J, HARTVICH F, VALENTA J, et al.Climate- induced landslide reactivation at the edge of the Most Basin (Czech Republic): progress towards better landslide prediction[J]. Natural Hazards and Earth System Sciences, 2013, 13: 361-374.
      [6] NEGI I S, KUMAR K, KATHAIT A, et al.Cost assessment of losses due to recent reactivation of Kaliasaur landslide on National Highway 58 in Garhwal Himalaya[J]. Natural Hazards, 2013, 68: 901-914.
      [7] RONCHETTI F, BORGATTI L, CERVI F, et al.The Valoria landslide reactivation in 2005-2006 (Northern Apennines, Italy)[J]. Landslides, 2007, 4: 189-195.
      [8] DENG H, WU L Z, HUANG R Q, et al.Formation of the Siwanli ancient landslide in the Dadu River, China[J]. Landslides, 2016: 1-10.
      [9] 邓建辉, 陈菲, 尹虎, 等. 泸定县四湾村滑坡的地质成因与稳定评价[J]. 岩石力学与工程学报, 2007, 26(10): 1945-1950.
      (DENG Jian-hui, CHEN Fei, YIN Hu, et al.Geological origin and stability evaluation of siwancun landslide in luding county[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10): 1945-1950. (in Chinese))
      [10] 郭健, 许模, 赵勇, 等. 黑水河库区某古滑坡形成及复活机制[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 721-728.
      (GUO Jian, XU Mo, ZHAO Yong, et al.Formation and reactivation mechanism of an ancient landslide in Heishui reservoir of Minjiang River, China[J]. Journal of Chengdu University of Technology, 2013, 40(6): 721-728. (in Chinese))
      [11] 李明辉, 李浩然, 王东辉. 大渡河上游亚喀则滑坡复活变形机理及发展趋势分析[J]. 水土保持研究, 2014, 21(1): 305-309.
      (LI Ming-hui, LI Hao-ran, WANG Dong-hui.The revival mechanism and development tendency of Yakaze landslide in the upper reaches of Dadu River[J]. Research of Soil and Water Conservation, 2014, 21(1): 305-309. (in Chinese))
      [12] 付博, 严明, 李波, 等. 岷江某水电站库区#1 滑坡复活机制分析[J]. 工程地质学报, 2008, 16(1): 11-16.
      (FU Bo, YAN Ming, LI Bo, et al.Analysis of revivification mechanism for a landslide on a hydropower station reservoir in Minjiang[J]. Journal of Engineering Geology, 2008, 16(1): 11-16. (in Chinese))
      [13] 司建涛, 刘顺. 青藏高原东缘岷江断裂构造特征、变形序列和演化历史[J]. 四川地质学报, 2008, 28(1): 1-5.
      (SI Jian-tao, LIU Shun.Geological features, deformation sequence and evolution of the Minjiang fault on the eastern margin of the Qinghai-Tibet Plateau[J]. Acta Geologica Sichuan, 2008, 28(1): 1-5. (in Chinese))
      [14] KUENZA K, TOWHATA I, ORENSE R P, et al.Undrained torsional shear tests on gravelly soils[J]. Landslides, 2004, 1(3): 185-194.
      [15] GEO-SLOPE International Ltd. Seepage modeling with SEEP/W 2007 version: an engineering methodology[M]. 3rd ed. Calgary: GEO-SLOPE International Ltd, 2008.
      [16] 李强, 管昌生, 周武. 基于Monte-Carlo法的滑坡稳定可靠性分析[J].岩石力学与工程学报, 2001, 20(增刊): 1674-1676.
      (LI Qiang, GUAN Chang-sheng, ZHOU Wu.Reliability analysis of landslide stability by Monte-Carlo method[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(S0): 1674-1676. (in Chinese))
      [17] 邓志平, 李典庆, 曹子君, 等. 考虑地层变异性和土体参数变异性的边坡可靠度分析[J]. 岩土工程学报, 2017, 39(6): 986-996.
      (DENG Zhi-ping, LI Dian-qing, CAO Zi-jun, et al.Slope reliability analysis considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 986-996. (in Chinese))
      [18] 吴迪, 简文彬, 徐超. 残积土抗剪强度的环剪试验研究[J]. 岩土力学, 2011, 32(7): 2045-2050.
      (WU Di, JIAN Wen-bin, XU Chao.Research on shear strength of residual soils by ring shear tests[J]. Rock and Soil Mechanics, 2011, 32(7): 2045-2050. (in Chinese))
      [19] 李小伟, 吴益平, 张荣, 等. 滑带土抗剪强度特性的环剪试验研究[J]. 科学技术与工程, 2014, 14(27): 273-277.
      (LI Xiao-wei, WU Yi-ping, ZHANG Rong, et al.Research on shear strength behavior of slide zone soil in ring shear tests[J]. Science Technology and Engineering, 2014, 14(27): 273-277. (in Chinese))
      [20] GB/T 32864—2016 滑坡防治工程勘查规范[S]. 2016.
      (GB/T 32864—2016 Code for geological investigation of landslide prevention[S]. 2016. (in Chinese))
      [21] SALVATICI T, MORELLI S, PAZZI V, et al.Debris flow hazard assessment by means of numerical simulations: implications for the Rotolon creek valley (Northern Italy)[J]. Journal of Mountain Science, 2017, 14(4): 636-648.
      [22] MCDOUGALL S, HUNGR H.A model for the analysis of rapid landslide motion across three-dimensional terrain[J]. Canadian Geotechnical Journal, 2004, 41: 1084-1097.
      [23] HUNGR O, EVANS S G.Rock avalanche runout prediction using a dynamic model[C]// Proceedings of the 7th International Symposium on Landslides. Rotterdam, 1996.
      [24] 王国章, 李滨, 冯振, 等. 重庆武隆鸡冠岭岩质崩滑-碎屑流过程模拟[J]. 水文地质工程地质, 2014, 41(5): 101-106.
      (WANG Guo-zhang, LI Bin, FENG Zhen, et al.Simulation of the process of the Jiguanling rock avalanche in Wulong of Chongqing[J]. Hydrogeology and Engineering Geology, 2014, 41(5):101-106. (in Chinese))
      [25] 齐超, 邢爱国, 殷跃平, 等. 东河口高速远程滑坡-碎屑流全程动力特性模拟[J]. 工程地质学报, 2012, 20(3): 334-339.
      (QI Chao, XING Ai-guo, YIN Yue-ping, et al.Numerical simulation of dynamic behavior of Donghekou rockslide-debris avalanche[J]. Journal of Engineering Geology, 2012, 20(3): 334-339. (in Chinese))
      [26] PIRULLI M.The Thurwieser rock avalanche (Italian Alps): Description and dynamic analysis[J]. Engineering Geology, 2009, 109(1/2): 80-92.
      [27] PIRULLI M, SCAVIA C, HUNGR O.Determination of rock avalanche run-out parameters through back analyses[C]// Proceedings of the 9th International Symposium on Landslides. London, 2004: 1361-1366.
      [28] CROSTA G B, CHEN H, FRATTINI P.Forecasting hazard scenarios and implications for the evaluation of countermeasure efficiency for large debris avalanches[J]. Engineering Geology, 2006, 83: 236-253.
      [29] SOSIO R, CROSTA G B, HUNGR O.Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps)[J]. Engineering Geology, 2008, 100(1/2): 11-26.
      [30] YIN Y P, CHENG Y L, LIANG J T, et al.Heavy-rainfall- induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake[J]. Landslides, 2015, 13(1): 9-23.
      [31] 王磊, 李滨, 高杨, 等. 大型厚层崩滑体运动特征模拟研究: 以重庆武隆县羊角场镇大巷危岩为例[J]. 地学前缘, 2016, 23(2): 251-259.
      (WANG Lei, LI Bin, GAO Yang, et al.Run-out prediction of large thick-bedded unstable rock: a case study of Daxiang unstable rock in Yangjiao town, Wulong county, Chongqing[J]. Earth Science Frontiers, 2016, 23(2): 251-259. (in Chinese))
      [32] HUNGR O.A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal, 1995, 32(4): 610-623.
    • 期刊类型引用(9)

      1. 梁喜凤,史延楠,秦叶波,姚莹,张慧,王永维. 不同含水率与静置时间下滩涂土壤流变特性试验. 农业工程学报. 2024(01): 182-190 . 百度学术
      2. 陈涛. 充分利用海洋环境提升声呐装备性能的研究. 数字海洋与水下攻防. 2024(02): 156-163 . 百度学术
      3. 张少雄,宋涛,郝鑫平,张力霆,陈剑刚. 赤泥浆体流变特性和流变模型适用性研究. 三峡大学学报(自然科学版). 2023(01): 48-53 . 百度学术
      4. 梁志超,张爱军,任文渊,胡海军,王毓国,李双村. 不同含水率高易溶盐含量的伊犁黄土流变特性. 农业工程学报. 2023(05): 90-99 . 百度学术
      5. 刘杰锋,李飒,段贵娟,王奕霖. 稳态剪切条件下中国南海软黏土的相态转变特性及流变模型. 岩土力学. 2023(S1): 341-349 . 百度学术
      6. 张博珊,王辉,陈熹. 一种考虑固相浓度作用的改进泥浆流变模型. 土木工程学报. 2023(S1): 134-141 . 百度学术
      7. 李家平,朱克超,周旋,陈衍力,李昱洋,马雯波. 深海富稀土沉积物的流变特性研究. 岩土力学. 2022(S1): 348-356 . 百度学术
      8. 刘晓磊,陈安铎,张红,陆杨,马路宽,贾永刚. 黄河水下三角洲高浓度黏性泥沙流变特性及其影响因素. 海洋学报. 2021(05): 127-134 . 百度学术
      9. 程升,朱超祁,单红仙,刘晓磊,贾永刚. 基于离散元的南海软黏土剪切变形模拟. 科学技术与工程. 2020(09): 3707-3714 . 百度学术

      其他类型引用(10)

    计量
    • 文章访问数:  345
    • HTML全文浏览量:  16
    • PDF下载量:  198
    • 被引次数: 19
    出版历程
    • 收稿日期:  2017-10-10
    • 发布日期:  2018-09-24

    目录

      /

      返回文章
      返回