• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于Timoshenko梁理论的车辆荷载下沉管隧道振动预测

陆世杰, 魏纲

陆世杰, 魏纲. 基于Timoshenko梁理论的车辆荷载下沉管隧道振动预测[J]. 岩土工程学报, 2018, 40(9): 1627-1634. DOI: 10.11779/CJGE201809008
引用本文: 陆世杰, 魏纲. 基于Timoshenko梁理论的车辆荷载下沉管隧道振动预测[J]. 岩土工程学报, 2018, 40(9): 1627-1634. DOI: 10.11779/CJGE201809008
LU Shi-jie, WEI Gang. Vibration prediction of immersed tube tunnels under vehicle loads based on Timoshenko beam theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1627-1634. DOI: 10.11779/CJGE201809008
Citation: LU Shi-jie, WEI Gang. Vibration prediction of immersed tube tunnels under vehicle loads based on Timoshenko beam theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1627-1634. DOI: 10.11779/CJGE201809008

基于Timoshenko梁理论的车辆荷载下沉管隧道振动预测  English Version

基金项目: 国家自然科学基金项目(51178428); 浙江省自然科学基金项目(LZ12E08001)
详细信息
    作者简介:

    陆世杰(1992- ),男,硕士,主要从事地下隧道运营对周边环境影响及风险评估与控制等方面的研究。E-mail:sjlu88@163.com。

    通讯作者:

    魏纲,E-mail:weig@zucc.edu.cn

  • 中图分类号: TU435;U459.5

Vibration prediction of immersed tube tunnels under vehicle loads based on Timoshenko beam theory

  • 摘要: 考虑车辆荷载影响,将沉管隧道管节等效为置于黏弹性地基上的Timoshenko梁,改进传统柔性接头等效模型,考虑接头阻尼作用,建立沉管隧道管节动力响应计算模型。依据Timoshenko梁理论,推导管节竖向振动微分方程,采用数值方法对管节位移响应进行求解。依托宁波甬江沉管隧道工程,分析车辆荷载下沉管隧道管节中点和端部的竖向位移响应情况,计算接头两端最大竖向位移差,并进行单因素影响分析。研究结果表明:江中段管节竖向位移较岸边段大,管节中点竖向位移较管节端部大,最大竖向位移达到3.7 mm;各接头参数相同的情况下,岸边接头的竖向位移差较中间接头大,最大竖向位移差达到1 mm;地基分布弹簧系数、接头刚度和车速对管节竖向位移幅值影响较大,而在安全车距范围内,车流密度对管节竖向位移幅值影响不大。
    Abstract: Considering the influences of vehicle loads, the element of immersed tunnels is equivalent to the Timoshenko's beam, and the traditional model for flexible joints is improved, which can bring their damping into play. According to the above improvement, this research presents a theoretical model for the analysis of the dynamic response of immersed tunnel elements under vehicle loads. On the basis of the Timoshenko's beam theory, the differential equation for the vertical vibration of the element is established, and the numerical method is used to derive the displacement response of the element. Based on the Yongjiang Immersed Tunnel in Ningbo, the responses of vertical displacement in the middle and at the ends of elements under vehicle loads are analyzed, the difference of the vertical displacement at the two ends of joint is calculated, and the influences of changing any single factor are analyzed. The results show that the vertical displacement of the element near the middle of the river is larger than that near the bank sides, and the vertical displacement in the middle of the element is larger than that at the ends of the element. The maximum vertical displacement is 3.7 mm. Under the same joint parameters, the difference of vertical displacement of side joints is larger than that of middle joints. The difference of the maximum vertical displacement is 1 mm. The spring coefficient of foundation, joint stiffness and vehicle speed have a large effect on the vertical displacement of the element, while the density of traffic flow has little effect on the vertical displacement of the element if the safety space between two vehicles is enough.
  • [1] 魏纲, 裘慧杰, 杨泽飞, 等. 考虑回淤的沉管隧道基础层压缩模型试验研究[J]. 岩土工程学报, 2014, 36(8): 1544-1552.
    (WEI Gang, QIU Hui-jie, YANG Ze-fei, et al.Model tests on compression of base layer of immersed tube tunnels considering siltation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1544-1552. (in Chinese))
    [2] XIAO W H, YU H T, YUAN Y, et al.Compression-bending behavior of a scaled immersion joint[J]. Tunnelling and Underground Space Technology, 2015, 49: 426-437.
    [3] LI W, FANG Y G, MO H H, et al.Model test of immersed tube tunnel foundation treated by sand-flow method[J]. Tunnelling and Underground Space Technology, 2014, 40(2): 102-108.
    [4] OORSOUW R S V. Behaviour of segment joints in immersed tunnels under seismic loading[D]. Delft: Delft University of Technology, 2010.
    [5] ANASTASOPOULOS I, GEROLYMOS N, DROSOS V, et al.Behaviour of deep immersed tunnel under combined normal fault rupture deformation and subsequent seismic shaking[J]. Bulletin of Earthquake Engineering, 2008, 6(2): 213-239.
    [6] KIYOMIYA O.Earthquake-resistant design features of immersed tunnels in Japan[J]. Tunnelling and Underground Space Technology, 1995, 10(4): 463-475.
    [7] ANASTASOPOULOS I, GEROLYMOS N, DROSOS V, et al.Nonlinear response of deep immersed tunnel to strong seismic shaking[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(9): 1067-1090.
    [8] 陈韶章, 陈越, 张弥. 沉管隧道设计与施工[M]. 北京: 科学出版社, 2002.
    (CHEN Shao-zhang, CHEN Yue, ZHANG Mi.Design and construction of immersed tube tunnels[M]. Beijing: Science Press, 2002. (in Chinese))
    [9] 唐英, 管敏鑫, 万晓燕. 高速铁路南京长江沉管隧道段的结构设计与计算[J]. 中国铁道科学, 1999, 20(4): 88-96.
    (TANG Ying, GUAN Min-xin, WAN Xiao-yan.Structural design and calculation for immersed high-speed railway tunnel crossing Yangtse River in Nanjing[J]. China Railway Science, 1999, 20(4): 88-96. (in Chinese))
    [10] 刘建飞, 贺维国, 曾进群. 静力作用下沉管隧道三维数值模拟[J]. 现代隧道技术, 2007, 44(1): 5-9.
    (LIU Jian-fei, HE Wei-guo, ZENG Jin-qun.Three-dimensional simulation for the static behavior of immersed tube tunnels[J]. Modern Tunnelling Technology, 2007, 44(1): 5-9. (in Chinese))
    [11] 高峰, 关宝树. 列车荷载对长江沉管隧道的影响[J]. 铁道学报, 2001, 23(3): 117-120.
    (GAO Feng, GUAN Bao-shu.Effects of train loads on immersed tunnel in Yangtze River[J]. Journal of the China Railway Society, 2001, 23(3): 117-120. (in Chinese))
    [12] 魏纲, 苏勤卫. 车辆荷载对软土地区海底沉管隧道的影响分析[J]. 地震工程学报, 2015, 37(1): 94-99.
    (WEI Gang, SU Qin-wei.Analysis of the impact of vehicle loads on submerged tunnels in areas of soft soil[J]. China Earthquake Engineering Journal, 2015, 37(1): 94-99. (in Chinese))
    [13] 梁禹. 广州地铁一号线越江隧道运营期结构变形监测[J]. 现代隧道技术, 2008, 45(3): 84-87.
    (LIANG Yu.Structural deformation monitoring of the submerged tunnel on Guangzhou Metro Line 1 during operation[J]. Modern Tunnelling Technology, 2008, 45(3): 84-87. (in Chinese))
    [14] 魏纲, 朱昕光, 苏勤卫. 沉管隧道竖向不均匀沉降的计算方法及分布研究[J]. 现代隧道技术, 2013, 50(6): 58-65.
    (WEI Gang, ZHU Xin-guang, SU Qin-wei.Calculation and distribution of vertical differential settlement in immersed tunnels[J]. Modern Tunnelling Technology, 2013, 50(6): 58-65. (in Chinese))
    [15] 邢建见. 考虑临时支撑垫块的沉管隧道管段结构静力计算方法研究[D]. 杭州: 浙江大学, 2016.
    (XING Jian-jian.Study of the static force calculation method of immersed tunnel structure considering temporary cushion block support[D]. Hangzhou: Zhejiang University, 2016. (in Chinese))
    [16] TIMOSHENKO S P.On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. Philosophical Magazine, 1921, 41(245): 744-746.
    [17] 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2007.
    (ZHAI Wan-ming.Vehicle-track coupling dynamics[M]. Beijing: Science Press, 2007. (in Chinese))
    [18] GRUNDMANN H, LIEB M, TROMMER E.The response of a layered half-space to traffic loads moving along its surface[J]. Archive of Applied Mechanics, 1999, 69(1): 55-67.
    [19] 谢雄耀, 王培, 李永盛, 等. 甬江沉管隧道长期沉降监测数据及有限元分析[J]. 岩土力学, 2014, 35(8): 2314-2324.
    (XIE Xiong-yao, WANG Pei, LI Yong-sheng, et al.Monitoring data and finite element analysis of long term settlement of Yongjiang immersed tunnel[J]. Rock and Soil Mechanics, 2014, 35(8): 2314-2324. (in Chinese))
    [20] MINDLIN R D.Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates[J]. Journal of Applied Mechanics, 1951, 18(1): 31-38.
    [21] 苏勤卫. 海底沉管隧道管段沉降与应变研究[D]. 杭州: 浙江大学, 2015.
    (SU Qin-wei.Study on pipe settlement and strain of undersea immersed tube tunnel[D]. Hangzhou: Zhejiang University, 2015. (in Chinese))
    [22] 周玉民, 谈至明, 田波. 车-路耦合作用力特性及混凝土路面动态响应[J]. 同济大学学报(自然科学版), 2012, 40(6): 854-860.
    (ZHOU Yu-min, TAN Zhi-ming, TIAN Bo.Vehicle-road coupling force characteristics and dynamic response of concrete pavements[J]. Journal of Tongji University(Natural Science), 2012, 40(6): 854-860. (in Chinese))
    [23] 李韶华, 杨绍普, 李皓玉. 汽车-路面-路基系统动态响应及参数分析[J]. 北京交通大学学报, 2010, 34(4): 127-131.
    (LI Shao-hua, YANG Shao-pu, LI Hao-yu.Dynamical response and parameters analysis for vehicle-pavement- foundation system[J]. Journal of Beijing Jiaotong University, 2010, 34(4): 127-131. (in Chinese))
    [24] 严松宏, 高波, 潘昌实. 地震作用下沉管隧道接头力学性能分析[J]. 岩石力学与工程学报, 2003, 22(2): 286-289.
    (YAN Song-hong, GAO Bo, PAN Chang-shi.Dynamic property analysis on joint for submerged tunnel under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 286-289. (in Chinese))
    [25] 胡指南. 沉管隧道节段接头剪力键结构形式与力学特性研究[D]. 西安: 长安大学, 2013.
    (HU Zhi-nan.Research on mechanic characteristics and structures of section joint shear keys on immersed tube tunnel[D]. Xi'an: Chang'an University, 2013. (in Chinese))
    [26] 萧文浩, 柴瑞, 禹海涛, 等. 沉管隧道接头非线性力学性能模拟方法[J]. 力学与实践, 2014, 36(6): 757-763.
    (XIAO Wen-hao, CHAI Rui, YU Hai-tao, et al.Modeling of nonlinear behaviors of immersion joint[J]. Mechanics in Engineering, 2014, 36(6): 757-763. (in Chinese))
    [27] 刘鹏, 丁文其, 杨波. 沉管隧道接头刚度模型研究[J]. 岩土工程学报, 2013, 35(增刊2): 133-139.
    (LIU Peng, DING Wen-qi, YANG Bo.Model for stiffness of joints of immersed tube tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 133-139. (in Chinese))
    [28] 廖顺庠, 吴在辉, 金吉寅. 桥梁橡胶支座[M]. 北京: 人民交通出版社, 1988.
    (LIAO Shun-xiang, WU Zai-hui, JIN Ji-yin.Bridge rubber bearing[M]. Beijing: China Communications Press, 1988. (in Chinese))
  • 期刊类型引用(8)

    1. 王怀强,李孝波,王天虎,席书衡,宣雨童. 基于岩土竖向台阵开展场地地震反应研究的若干进展. 地震工程与工程振动. 2025(02): 50-63 . 百度学术
    2. 范宏飞,王彦臻,陈炜昀,陈国兴,赵凯. 水平成层海床场地非线性地震反应的流-固弱耦合分析. 振动工程学报. 2025(04): 849-859 . 百度学术
    3. 郭云峰. 岩土勘察中地震效应问题的研究. 科技与创新. 2023(13): 117-119+122 . 百度学术
    4. 王永光,梁建文,巴振宁. 基于修正阻尼的土体非线性模型及其在Abaqus中的实现. 岩土力学. 2023(08): 2287-2296 . 百度学术
    5. 陈国兴,夏高旭,王彦臻,金丹丹. 琼州海峡海床地震反应特性的一维非线性分析. 工程力学. 2022(05): 75-85 . 百度学术
    6. 赵凯,夏高旭,王彦臻,赵丁凤,庄海洋,陈国兴. 土–地下结构相互作用的三维弱耦合有效应力分析法. 岩土工程学报. 2022(05): 861-869 . 本站查看
    7. 阮滨,吉瀚文,王苏阳,贺鸿俊,苗雨. 基于台阵观测的基岩地震动入射波分离方法及数值验证. 岩土力学. 2022(09): 2615-2623+2642 . 百度学术
    8. 陈伟庚,刘洋,王栋,岳茂,张良. 西南山区铁路沿线反倾岩质边坡地震动力响应振动台试验研究. 铁道建筑. 2021(04): 93-96 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  278
  • HTML全文浏览量:  8
  • PDF下载量:  180
  • 被引次数: 16
出版历程
  • 收稿日期:  2017-06-07
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回