• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

分数阶塑性力学及其砂土本构模型

孙逸飞, 高玉峰, 鞠 雯

孙逸飞, 高玉峰, 鞠 雯. 分数阶塑性力学及其砂土本构模型[J]. 岩土工程学报, 2018, 40(8): 1535-1541. DOI: 10.11779/CJGE201808021
引用本文: 孙逸飞, 高玉峰, 鞠 雯. 分数阶塑性力学及其砂土本构模型[J]. 岩土工程学报, 2018, 40(8): 1535-1541. DOI: 10.11779/CJGE201808021
SUN Yi-fei, GAO Yu-feng, JU Wen. Fractional plasticity and its application in constitutive model for sands[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1535-1541. DOI: 10.11779/CJGE201808021
Citation: SUN Yi-fei, GAO Yu-feng, JU Wen. Fractional plasticity and its application in constitutive model for sands[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1535-1541. DOI: 10.11779/CJGE201808021

分数阶塑性力学及其砂土本构模型  English Version

基金项目: 国家自然科学基金重点项目(41630638); 国家重点基础研; 究发展计划(“973”计划)项目(2015CB057901); 中央高校基本科; 研业务费项目(2017B05214)
详细信息
    作者简介:

    孙逸飞(1988- ),男,副教授,主要研究分数阶塑性力学与粗粒土本构模型。E-mail: sunny@hhu.edu.cn。

Fractional plasticity and its application in constitutive model for sands

  • 摘要: 砂土的剪胀以及应力-应变关系通常依赖于其物质状态; 其塑性流动方向不再与加载方向重合,而是随其状态改变而改变。为了描述这一非关联特性,传统的岩土塑性理论通常需要额外假定一个独立于屈服面的塑性势面,并人为地将塑性势面相关的参数与状态参数唯像地关联在一起。从而,使得模型参数增多、部分参数缺乏物理意义。不同于与传统塑性力学,分数阶塑性力学基于非局域性的微分算子和梯度,其在某一应力点的微分方向不仅与该点的应力状态有关,还与到达该应力点的加载历史、过程相关; 从而,无需额外假定塑性势面(或屈服面),仅需要对已有屈服面(或塑性势面)进行分数阶微分求解,便可以建立砂土的状态依赖分数阶弹塑性力学模型。最后,通过模拟几种不同砂土的三轴排水与不排水试验结果,发现:所提出的模型可以较好地描述砂土在不同初始状态及加载条件下的应力应变行为。
    Abstract: It has been recognized that the stress-dilatancy and stress-strain relationship of sand depend on the material state. The plastic flow direction does not usually coincide with the corresponding loading direction but evolves with the material state. To consider such non-associativity, an additional plastic potential surface that is independent of the yielding surface is usually assumed. A state parameter is then incorporated into the material constants of the plastic potential surface, which brings more model parameters where some of them even have no physical meanings. Unlike the traditional plasticity theory, the fractional plasticity is established on non-local fractional operators and gradients where the derivatives of a stress point are determined not only by the state of the stress point of interest but also by the loading history before reaching this point. Therefore, without the necessity of assuming an additional plastic potential (yielding) surface, a state-dependent non-associated fractional plasticity model for sands can be easily developed by conducting fractional order derivatives on the yielding (plastic potential) surface. To validate the proposed model, a series of drained and undrained triaxial compression test results of different sands are simulated and then compared. A good agreement between the model simulations and the corresponding test results can be observed.
  • [1] LEE K L, SEED H B.Drained strength characteristics of sands[J]. Journal of Soil Mechanics and Foundation Divison, ASCE, 1967, 93(6): 117-141.
    [2] VERDUGO R, ISHIHARA K.The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
    [3] ISHIHARA K, TATSUOKA F, YASUDA S.Undrained deformation and liquefaction of sand under cyclic stresses[J]. Soils and Foundations, 1975, 15(1): 29-44.
    [4] DOANH T, HOANG M T, ROUX J N, et al.Stick-slip behaviour of model granular materials in drained triaxial compression[J]. Granular Matter, 2013, 15(1): 1-23.
    [5] BEEN K, JEFFERIES M G.A state parameter for sands[J]. Géotechnique, 1985, 22(6): 99-112.
    [6] MUIR WOOD D, BELKHEIR K, LIU D.Strain softening and state parameter for sand modelling[J]. Géotechnique, 1994, 44(2): 335-339.
    [7] LI X.A sand model with state-dapendent dilatancy[J]. Géotechnique, 2002, 52(3): 173-186.
    [8] SUN Y, SHEN Y.Constitutive model of granular soils using fractional order plastic flow rule[J]. Internaitonal Journal of Geomechanics, ASCE, 2017, 04017025.
    [9] SUN Y, XIAO Y.Fractional order model for granular soils under drained cyclic loading[J]. International Journal of Numerical and Analytical Methods in Geomechanics, 2017, 41(4): 555-577.
    [10] LI X, DAFALIAS Y.Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
    [11] RUSSELL A R, KHALILI N.A bounding surface plasticity model for sands exhibiting particle crushing[J]. Canadian Geotechnical Journal, 2004, 41(6): 1179-1192.
    [12] XIAO Y, LIU H, CHEN Y, et al.State-dependent constitutive model for rockfill materials[J]. International Journal Geomechanics, ASCE, 2014, 15(5): 04014075.
    [13] XIAO Y, LIU H, CHEN Y, JIANG J.Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, ASCE, 2014, 140(4): 04014002.
    [14] YANG J, LI X.State-dependent strength of sands from the perspective of unified modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(2): 186-198.
    [15] SUN Y, XIAO Y. Fractional order plasticity model for granular soils subjected to monotonic triaxial compression[J]. International Journal of Solids and Structures, 2017, 118/119: 224-234.
    [16] DAFALIAS Y F, TAIEBAT M.SANISAND-Z: zero elastic range sand plasticity model[J]. Géotechnique, 2016, 66(12): 999-1013.
    [17] PASTOR M, ZIENKIEWICZ O C, CHAN A H C. Generalized plasticity and the modelling of soil behaviour[J]. International Journal of Numerical and Analytical Methods in Geomechanics, 1990, 14(3): 151-190.
    [18] DAFALIAS Y F.Bounding surface plasticity I: mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, ASCE, 1986, 112(9): 966-987.
    [19] SUMELKA W.A note on non-associated Drucker-Prager plastic flow in terms of fractional calculus[J]. Journal of Theoretical and Applied Mechanics, 2014, 52(2): 571-574.
    [20] 李广信. 土的清华弹塑性模型及其发展[J]. 岩土工程学报, 2006, 28(1): 1-10.
    (LI Guang-xin.Characteristics and development of tsinghua elasto-plastic model for soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 1-10. (in Chinese))
    [21] YIN D, WU H, CHENG C, et al.Fractional order constitutive model of geomaterials under the?condition of triaxial test[J]. International Journal of Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 961-972.
    [22] PODLUBNY I.Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[M]. San Diego: Academic Press, 1998.
    [23] LI X, WANG Y.Linear representation of steady-state line for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(12): 1215-1217.
    [24] SCHOFIELD A, WROTH P.Critical state soil mechanics[M]. London: McGraw-Hill, 1968.
  • 期刊类型引用(3)

    1. 何风贞,李桂臣,阚甲广,许兴亮,冯晓巍,孙元田. 岩石多尺度损伤研究进展. 煤炭科学技术. 2024(10): 33-53 . 百度学术
    2. 刘嘉,薛熠,高峰,滕腾,梁鑫. 层理页岩水力裂缝扩展规律的相场法研究. 岩土工程学报. 2022(03): 464-473 . 本站查看
    3. 熊祎滢,刘春,刘恒,唐超,周泽栖. 水力耦合作用下岩体破坏现状分析. 四川建筑. 2022(04): 210-212 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-07-18
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回