RT模式下考虑主应力偏转的刚性挡墙地震主动土压力

    张雯萍, 周亦涛, 俞 缙, 刘士雨, 蔡燕燕, 余 闯

    张雯萍, 周亦涛, 俞 缙, 刘士雨, 蔡燕燕, 余 闯. RT模式下考虑主应力偏转的刚性挡墙地震主动土压力[J]. 岩土工程学报, 2018, 40(8): 1498-1506. DOI: 10.11779/CJGE201808016
    引用本文: 张雯萍, 周亦涛, 俞 缙, 刘士雨, 蔡燕燕, 余 闯. RT模式下考虑主应力偏转的刚性挡墙地震主动土压力[J]. 岩土工程学报, 2018, 40(8): 1498-1506. DOI: 10.11779/CJGE201808016
    ZHANG Wen-ping, ZHOU Yi-tao, YU Jin, LIU Shi-yu, CAI Yan-yan, YU Chuang. Seismic active earth pressures on rigid retaining walls under RT mode considering rotation of principal stresses[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1498-1506. DOI: 10.11779/CJGE201808016
    Citation: ZHANG Wen-ping, ZHOU Yi-tao, YU Jin, LIU Shi-yu, CAI Yan-yan, YU Chuang. Seismic active earth pressures on rigid retaining walls under RT mode considering rotation of principal stresses[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1498-1506. DOI: 10.11779/CJGE201808016

    RT模式下考虑主应力偏转的刚性挡墙地震主动土压力  English Version

    基金项目: 国家自然科学基金项目(51774147,51679093); 深部岩土力学与地下工程国家重点实验室开放基金项目(SKLGDUEK1701); 2015年度福建省高校新世纪优秀人才支持计划项目; 福建省自然科学基金项目(2017J01094,2015J01210)
    详细信息
      作者简介:

      张雯萍(1992- ),女,河南洛阳人,硕士研究生,主要从事岩土力学与地基处理等方面的研究工作。E-mail:zhangwxwz@163.com。

    Seismic active earth pressures on rigid retaining walls under RT mode considering rotation of principal stresses

    • 摘要: 依据拟静力学理论,考虑主应力偏转的影响,推导了绕墙顶转动模式(RT模式)下的地震主动土压力的计算公式。通过旋转挡土墙的解析模型,将地震问题转化为静力问题,并根据库仑土压力理论得到地震主动破裂角。在此基础上改进圆弧形小主应力偏转迹线,利用摩尔应力圆得到了RT模式下地震主动侧压力系数和水平微元土层间摩擦系数公式,提出基于微分薄层法的地震主动土压力解析式。分析了主要参数对地震主动破裂角、地震主动侧压力系数、水平微元土层间摩擦系数、地震主动土压力分布和侧向土压力作用位置的影响。将解析结果与其他土压力理论及试验数据进行对比,结果表明本文方法更为可靠。
      Abstract: Considering the rotation of the principal stresses, new formulae for seismic active pressures on rigid retaining walls under rotation about top (RT mode) are derived by the pseudo-static method. Through the rotation model, the calculation of seismic active earth pressures by the pseudo-static method is transforming into that of static active earth pressures, and the seismic active rupture angle is obtained by means of the Coulomb earth pressure theory. According to the Mohr stress circle and the improved circular arc trajectory of the minor principal stresses being a circular arch, the coefficients of the lateral seismic active earth pressures and the horizontal interfacial frictions are proposed under RT mode. Then based on the force equilibrium of the differential sliding backfill element, the formula for the seismic active earth pressures on the rigid retaining wall under rotation about top is obtained. Moreover, the effects of influence parameters on the seismic active rupture angle, lateral seismic active earth pressure and its coefficient, horizontal interfacial friction coefficient, resultant of the seismic active earth pressure and height of its application are discussed. And comparisons of the predicted values by the proposed method and other methods are carried out as well as model tests, and it is shown that the proposed method is more reasonable and effective than other methods.
    • [1] OKABE S.General theory of earth pressure[J]. Journal of the Japanese society of Civil Engineers, 1926, 12(1): 123-134.
      [2] MONONOBE N, MATSUO H.On the determination of earth pressure during earthquakes[C]// Proceedings of the World Engineering Conference. Tokyo, 1929: 179-187.
      [3] SHERIF M A, FANG Y S.Dynamic earth pressure on walls rotation about top[J]. Soils and Foundations, 1984, 24(4): 109-117.
      [4] ISHIBASHI I, FANG Y S.Dynamic earth pressures with different wall movement modes[J]. Soils and Foundations, 1987, 27(4): 11-22.
      [5] KHOSRAVI M H, PIPATPONGSA T, TAKEMURA J.Experimental analysis of earth pressure against rigid retaining walls under translation mode[J]. Géotechnique, 2013, 63(12): 1020-1028.
      [6] CHOUDHURY D, SINGH S.New approach for estimation of static and seismicactive earth pressure[J]. Geotechnical and Geological Engineering, 2006, 24: 117-127.
      [7] CALTABIANO S, CASCONE E, & MAUGERI M. Static and seismic limit equilibrium analysis of sliding retaining walls under different surcharge conditions[J]. Soil Dynamics and Earthquake Engineering, 2012, 37(6): 38-55.
      [8] ISKANDER M, CHEN Z, OMIDVAR M, et al.Active static and seismic earth pressure for c-φ soils[J]. Soils and Foundations, 2013, 53: 639-652.
      [9] GHOSH S, DEBNATH C.Pseudo-static analysis of reinforced earth retaining wall considering non-linear failure surface[J]. Geotechnical and Geological Engineering, 2016, 34(4): 981-990.
      [10] 林宇亮, 杨果林, 赵炼恒, 等. 地震动土压力水平层分析法[J]. 岩土力学, 2010, 29(12): 2581-2591.
      (LIN Yu-liang, YANG Guo-lin, ZHAO Lian-heng, et al.Horizontal slices analysis method for seismic earthpressure calculation[J]. Rock and Soil Mechanics, 2010, 29(12): 2581-2591. (in Chinese))
      [11] 孙勇. 地震条件下挡土墙主动土压力及其分布的统一解[J]. 岩土力学, 2012, 33(1): 255-261.
      (SUN Yong.Unified solution of seismic active earth pressure and its distribution on a retaining wall[J]. Rock and Soil Mechanics, 2012, 33(1): 255-261. (in Chinese))
      [12] 张国祥. 地震条件下挡土墙主动土压力及其分布的新分析法[J]. 岩土力学, 2014, 35(2): 334-338.
      (ZHANG Guo-xiang.New analysis method of seismic active earth pressure and its distribution on a retaining wall[J]. Rock and Soil Mechanics, 2014, 35(2): 334-338. (in Chinese))
      [13] 张国祥, 王敏. 新建筑边坡规范地震主动土压力计算公式的推导及完善[J]. 岩土力学, 2017, 38(4): 1097-1102.
      (ZHANG Guo-xiang, WANG Min.Derivation and improvement of formula for calculating seismic active earth pressure in new “Technical code for building slope engineering”[J]. Rock and Soil Mechanics, 2017, 38(4): 1097-1102. (in Chinese))
      [14] 卢坤林, 杨扬, 朱大勇, 等. 考虑土拱效应的挡土墙地震土压力及其分布[J]. 水电能源科学, 2010, 28(5): 65-68.
      (LU Kun-lin, YANG Yang, ZHU Da-yong, et al.Seismic earth pressure on retaining wall considering soil arching effects and its distribution[J]. Water Resources and Power, 2010, 28(5): 65-68. (in Chinese))
      [15] 侯键, 夏唐代, 陈炜昀, 等. 考虑土拱效应的挡土墙地震主动土压力静力研究[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2825-2832.
      (HOU Jian, XIA Tang-dai, CHEN Wei-yun, et al.Static study of seismic active earth pressure on retaining walls considering soil arching effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2825-2832. (in Chinese))
      [16] 黄睿, 夏唐代. 无黏性土的地震主动土压力水平层法改[J]. 哈尔滨工业大学学报, 2014, 46(2): 85-91.
      (HUNG Rui, XIA Tang-dai.Improved horizontal slice method for seismic active earth pressure of cohesionless soil[J]. Journal of Harbin Institute of Technology, 2014, 46(2): 85-91. (in Chinese))
      [17] HANDY R L.The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-318.
      [18] 蒋波, 应宏伟, 谢康和. 挡土墙后土体拱效应分析[J]. 浙江大学学报 (工学版), 2005, 39(1): 131-136.
      (JIANG Bo, YING Hong-wei, XIE Kang-he.Arching effect behind retaining wall[J]. Journal of Zhejiang University (Engineeing Science), 2005, 39(1): 131-136. (in Chinese))
      [19] CAI Y, CHEN Q, ZHOU Y, et al.Estimation of passive earth pressure against rigid retaining wall considering arching effect in cohesive-frictional backfill under translation mode[J]. International Journal of Geomechanics, 2016:04016093.
      [20] 俞缙, 周亦涛, 蔡燕燕, 等. 基于土拱效应的刚性挡墙墙后主动土压力[J]. 岩土工程学报, 2013, 35(12): 2306-2310.
      (YU Jin, ZHOU Yi-tao, CAI Yan-yan, et al.Active earth pressure for rigid retaining wall considering soil arching effect[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2306-2310. (in Chinese))
      [21] ZHOU Y, CHEN Q, CHEN F, et al.Active earth pressure on translating rigid retaining structures considering soil arching effect[J]. European Journal of Environmental and Civil Engineering, 2016: 1-17.
      [22] GOEL S, PATRA N R.Effect of arching on active earth pressures for rigid retaining walls considering translation mode[J]. International Journal of Geomechanics, 2008, 8(2): 123-133.
      [23] 张永兴, 陈林. 地震作用下挡土墙主动土压力分布[J]. 深圳大学学报 (理工版), 2012, 29(1): 31-37.
      (ZHANG Yong-xing, CHEN Lin.Seismic active earth pressure of retaining wall[J]. Journal of Shenzhen University (Science and Engineering), 2012, 29(1): 31-37. (in Chinese))
      [24] 彭述权, 周健, 樊玲, 等. 考虑土拱效应刚性挡墙土压力研究[J]. 岩土力学, 2008, 29(10): 2701-2707.
      (PENG Shu-quan, ZHOU Jian, FAN Ling, et al.Research on earth pressure of rigid retaining wall considering soil arching[J]. Rock and Soil Mechanics, 2008, 29(10): 2701-2707. (in Chinese))
    • 期刊类型引用(22)

      1. 王智超,彭柱,彭峰,闫实. 聚氨酯固化钙质砂物理力学特性. 长江科学院院报. 2024(01): 107-113 . 百度学术
      2. 韩庆华,王永超,刘铭劼,李浩斌. 振动台试验饱和机制砂模型土动力特性研究. 土木工程学报. 2024(03): 110-122 . 百度学术
      3. 王家全,和玉,祝梦柯,钱弘毅. 相对密实度和固结应力比对北部湾海砂动力特性影响的试验研究. 安全与环境工程. 2024(04): 20-28 . 百度学术
      4. 王钰轲,李俊豪,邵景干,余翔. 不同影响因素下路用黄河泥沙动剪切模量和阻尼比试验及理论模型研究. 工程科学学报. 2023(03): 509-519 . 百度学术
      5. 胡健,肖杨,肖鹏,王林,丁选明,仉文岗,刘汉龙. 基于机器学习预测微生物加固钙质砂统一动强度. 中国公路学报. 2023(02): 80-88 . 百度学术
      6. 刘鑫,李飒,尹福顺,姚婷. 基于动态图像技术的南海钙质土颗粒形态特征研究. 岩土工程学报. 2023(03): 590-598 . 本站查看
      7. 邱筱童,尹训强,王桂萱. 考虑不同影响因素的珊瑚岛礁场地地震响应分析. 自然灾害学报. 2023(01): 131-138 . 百度学术
      8. 尹福顺,李飒,刘鑫. 钙质粗粒料颗粒强度和压缩特性的试验研究. 岩土力学. 2023(04): 1120-1129+1152 . 百度学术
      9. 李能,吴杨,周福霖,谭平. 岛礁吹填珊瑚砂不排水单调和循环剪切特性试验. 中国公路学报. 2023(08): 152-161 . 百度学术
      10. 郭桢,蒲建,卢劲锴,黄雨. 南海西沙岛礁非饱和珊瑚砂共振柱-弯曲元试验研究. 工程地质学报. 2023(05): 1552-1562 . 百度学术
      11. 吴杨,崔杰,李晨,温丽维,单振东,廖静容. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究. 岩石力学与工程学报. 2022(01): 205-216 . 百度学术
      12. 赵云辉,孟凡超,郑志华. 相对密实度对结构性砂土动剪切模量和阻尼比影响的试验研究. 工程抗震与加固改造. 2022(01): 152-159 . 百度学术
      13. 吴琪,杨铮涛,刘抗,陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究. 岩土工程学报. 2022(08): 1386-1396 . 本站查看
      14. 陈龙珠,顾晓强. 共振柱试验确定土动剪切模量和阻尼比的理论辨析. 地基处理. 2022(05): 445-450 . 百度学术
      15. 王伟,李犇,罗佳乐,胡俊,姜屏,李娜. 动荷载作用历史对水泥固化钙质砂三轴力学特性影响. 自然灾害学报. 2022(05): 158-167 . 百度学术
      16. 周正龙,丁芷萱,刘杰,赵凯,梁珂,鹿庆蕊. 南海海域饱和粉土动剪切模量和阻尼比试验研究. 土木工程学报. 2022(S1): 227-233 . 百度学术
      17. 宋前进,程磊,贺为民. 孔隙比对土体动力特性参数的影响——以豫东平原粉土为例. 科学技术与工程. 2021(07): 2830-2835 . 百度学术
      18. 高盟,彭晓东,陈青生. 南海非饱和钙质砂动力特性三轴试验研究. 北京工业大学学报. 2021(06): 625-635 . 百度学术
      19. ZHANG Yan-ling,DING Xuan-ming,CHEN Zhi-xiong,WU Qi,WANG Cheng-long. Seismic responses of slopes with different angles in coral sand. Journal of Mountain Science. 2021(09): 2475-2485 . 必应学术
      20. 郭聚坤,王瑞,尹斌,卞贵建,魏道凯. 钢-钙质砂界面循环剪切特性试验研究. 建筑结构. 2021(S2): 1613-1617 . 百度学术
      21. 宋前进,程磊,贺为民. 豫东平原粉质黏土动剪切模量与阻尼比试验研究. 地震工程学报. 2020(04): 1013-1018 . 百度学术
      22. 信鹏飞,李飒,吴文娟. 冲击荷载作用下钙质砂破碎与变形特性研究. 水力发电学报. 2019(12): 102-111 . 百度学术

      其他类型引用(16)

    计量
    • 文章访问数:  305
    • HTML全文浏览量:  8
    • PDF下载量:  134
    • 被引次数: 38
    出版历程
    • 收稿日期:  2017-07-16
    • 发布日期:  2018-08-24

    目录

      /

      返回文章
      返回