• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土体干缩裂隙的形成发育过程及机理

唐朝生, 施斌, 崔玉军

唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 2018, 40(8): 1415-1423. DOI: 10.11779/CJGE201808006
引用本文: 唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 2018, 40(8): 1415-1423. DOI: 10.11779/CJGE201808006
TANG Chao-sheng, SHI Bin, CUI Yu-jun. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1415-1423. DOI: 10.11779/CJGE201808006
Citation: TANG Chao-sheng, SHI Bin, CUI Yu-jun. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1415-1423. DOI: 10.11779/CJGE201808006

土体干缩裂隙的形成发育过程及机理  English Version

基金项目: 国家自然科学基金项目(41572246,41772280); 优秀青年科学基金项目(41322019); 国家自然科学基金重点项目(41230636); 江苏省自然科学基金项目(BK20171228,BK20170394); 中央高校基本科研业务费专项资金资助项目
详细信息
    作者简介:

    唐朝生(1980- ),男,教授,博士生导师,主要从事工程地质与环境岩土工程研究。E-mail: tangchaosheng@nju.edu.cn。

Behaviors and mechanisms of desiccation cracking of soils

  • 摘要: 土体干缩开裂(龟裂)是一种常见的自然现象,龟裂的产生会破坏土体的完整性,极大地弱化土体的工程性质。基于室内试验结果,发现龟裂发育过程可分为3个典型阶段,具有很强的时序特征,且新生裂隙一般垂直已有裂隙生长。根据水土相互作用原理和基本土力学理论,建立了土体龟裂概念模型,对实验室和自然界中观测到的相关龟裂现象及其机理进行了分析,得到如下主要结论:①土体中存在收缩变形空间是龟裂发育的前提,主要与土质条件有关;②龟裂是土体发生张拉破坏的表现形式,孔隙水的表面张力及干燥过程中引起的基质吸力(毛细水作用力)会在土体中形成张拉应力场,这是导致龟裂的主要力学诱因;③当张拉应力场的大小超过土体的抗拉强度或土颗粒间的联接强度时,裂隙便会产生,导致局部区域积聚的应变能释放,应力场重新调整。从宏观上看,基质吸力和抗拉强度是控制龟裂发育的两个关键力学指标,但从微观上看,土体材料尤其是结构的非均质性对裂隙发育过程和裂隙网络的几何形态特征均有重要影响。通常情况下,大部分裂隙都是在饱和阶段产生,且裂隙产生时对应的临界含水率有可能高于液限;土体表面上的“杂点”易导致应力集中,裂隙往往率先在“杂点”处产生;④受表面和裂隙面张拉应力场的共同作用,表层土体边缘会发生向上卷曲变形,产生 “煎饼效应”。此外,土体在收缩过程中还存在收缩核现象。
    Abstract: The desiccation cracking of soils is a common natural phenomenon. The presence of cracks in soils can significantly destroy integrity of the soil mass and weaken their engineering properties. In this investigation, laboratory desiccation tests are conducted. It is found that the desiccation cracking process takes place at three typical stages and presents evident time-order characteristics. New cracks always start perpendicularly from the existing cracks. Based on the fundamental principles of water-soil interaction and soil mechanics, the mechanisms of desiccation cracking are discussed. A series of conceptual models are established to provide insights behind the laboratory and field observations. The following conclusions can be drawn: (1) The space for soil shrinkage deformation is the basis of cracking that is conditioned by soil nature. (2) The desiccation cracking is one form of tensile failures. Surface tension of pore water and drying-induced metric suction (capillary force) can lead to the development of tensile stress field in soils, which is the main mechanical cause of cracking. (3) Cracking occurs once the drying-induced tensile stress exceeds the tensile strength of soil, or the connection strength between soil particles. After that, the gathered local strain energy releases and the stress field tends to readjust. From macroscopic scale, the matric suction and tensile strength of soils are the two key mechanical parameters controlling the desiccation cracking behaviors, while from microscopic scale, the geometric and morphologic characteristics of crack pattern are strongly linked to the homogenous and microstructure features of soils. Generally, most of the cracks initiate when the soils are still fully saturated. The corresponding critical water content at onset of cracking is likely higher than the liquid limit. The flaws on soil surface can result in stress concentration and trigger the initiation of cracks. (4) The surface curling like “pancake effect” may occur during drying. The combined effects of tensile stress field in soil surface and crack face are responsible for this phenomenon. Moreover, the
  • [1] MORRIS P H, GRAHAM J, WILIAMS D J.Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29: 263-267.
    [2] ALBRECHT B A. BENSON C H.Effect of desiccation on compacted natural clays[J]. J of Geotech and Geoenvir Engrg, ASCE, 2001, 127(1): 67-75.
    [3] 姚海林, 郑少河, 陈守义. 考虑裂隙及雨水入渗影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2001, 23(5): 606-609.
    (YAO Hai-lin, ZHENG Shao-he, CHEN Shou-yi.Analysis on the slope stability of expansive soils considering cracks and infiltration of rain[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 606-609. (in Chinese))
    [4] 孔令伟, 陈建斌, 郭爱国, 等. 大气作用下膨胀土边坡的现场响应试验研究[J]. 岩土工程学报, 2007, 29(7): 1065-1073.
    (KONG Ling-wei, CHEN Jian-bin, GUO Ai-guo, et al.Field response tests on expansive soil slopes under atmosphere[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1065-1073. (in Chinese))
    [5] 殷宗泽, 袁俊平, 韦杰, 等. 论裂隙对膨胀土边坡稳定性的影响[J]. 岩土工程学报, 2012, 34(12): 2155-2161.
    (YIN Zong-ze, YUAN Jun-ping, WEI Jie, et al.Influence of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2155-2161. (in Chinese))
    [6] 唐朝生, 施斌, 刘春. 膨胀土收缩开裂特性研究[J]. 工程地质学报, 2012, 20(5): 663-673.
    (TANG Chao-sheng, SHI Bin, LIU Chun.Study on desiccation cracking behavior of expansive soil[J]. Journal of Engineering Geology, 2012, 20(5): 663-673. (in Chinese))
    [7] 龚壁卫, 程展林, 胡波, 等. 膨胀土裂隙的工程特性研究[J]. 岩土力学, 2014, 35(7): 1825-1830.
    (GONG Bi-wei, CHENG Zhan-lin, HU Bo, et al.Research on engineering properties of fissures in expansive soil[J]. Rock and Soil Mechanics, 2014, 35(7): 1825-1830. (in Chinese))
    [8] PERON H, HERCHEL T, LALOUI L, et al.Fundamentals of desiccation cracking of fine-grained soils: experimental characterization and mechanisms identification[J]. Canadian Geotechnical Journal, 2009, 46: 1177-1201.
    [9] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272.
    (CHEN Zheng-han.On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese))
    [10] MILLER C J, MI H, YESILLER N.Experimental analysis of desiccation crack propagation in clay liners[J]. Journal of the American Water Resources Association, 1998, 34(3): 677-686.
    [11] 易顺民, 黎志恒, 张延中. 膨胀土裂隙结构的分形特征及其意义[J]. 岩土工程学报, 1999, 21(3): 294-298.
    (YI Shun-min, LI Zhi-heng, ZHANG Yan-zhong.The fractal characteristics of fractures in expansion soil and its significance[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(3): 294-298. (in Chinese))
    [12] 袁俊平, 殷宗泽. 膨胀土裂隙的量化指标与强度性质研究[J]. 水利学报, 2004(6): 108-113.
    (YUAN Jun-ping, YIN Zong-ze.Quantitative index of fissure and strength characteristics of fissured expansive soils[J]. Journal of Hydraulic Engineering, 2004(6): 108-113. (in Chinese))
    [13] 唐朝生, 施斌, 刘春, 等. 黏性土在不同温度下干缩裂缝的发展规律及形态学定量分析[J]. 岩土工程学报, 2007, 29(5): 743-749.
    (TANG Chao-sheng, SHI Bin, LIU Chun, et al.Developing law and morphological analysis of shrinkage cracks of clay soil at different temperature[J]. Chinese Journal of Geotechnical Engineering, 2007a, 29(5): 743-749. (in Chinese))
    [14] TANG C S, CUI Y J, TANG A M, et al.Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils[J]. Engineering Geology, 2010, 114: 261-266.
    [15] 唐朝生, 王德银, 施斌, 等. 土体干缩裂隙网络定量分析[J]. 岩土工程学报, 2013, 35(12): 2298-2305.
    (TANG Chao-sheng, WANG De-yin, SHI Bin, et al.Quantitative analysis of soil desiccation crack network[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2298-2305. (in Chinese))
    [16] TANG C S, SHI B, LIU C, et al.Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101(3/4): 204-217.
    [17] TANG C S, CUI Y J, SHI B, et al.Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles[J]. Geoderma, 2011, 166(1): 111-118.
    [18] MITCHELL J K.Fundamentals of soil behavior[M]. New York: Wiley, 1993.
    [19] DANIEL D E, WU Y K.Compacted clay liners and covers for arid sites[J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(2): 223-237.
    [20] FREDLUND D G, RAHARDJO H.Soil mechanics for unsaturated soils[M]. New York: Wiley, 1993.
    [21] ALBRECHT B A, BENSON C H.Effect of desiccation on compacted natural clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(1): 67-75.
    [22] MESRI G, ALI S.Undrained shear strength of a glacial clay overconsolidated by desiccation[J]. Géotechnique, 1999, 49(2): 181-198.
    [23] TANG C S, SHI B, LIU C, et al.Experimental characterization of shrinkage and desiccation cracking in thin clay layer[J]. Applied Clay Science, 2011, 52(1/2): 69-77.
    [24] 唐朝生, 崔玉军, TANG A M, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011(8): 1271-1279.
    (TANG Chao-sheng, CUI Yu-jun, TANG A M, et al.Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011(8): 1271-1279. (in Chinese))
    [25] HU L B, PÉRON H, HUECKEL T, et al. Desiccation shrinkage of non-clayey soils: multiphysics mechanisms and a microstructural model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(12): 1761-1781.
    [26] TANG C S, PEI X J, WANG D Y, et al.Tensile strength of compacted clayey soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(4): 4014122.
    [27] TANG C S, SHI B, LIU C, et al.Experimental investigation of the desiccation cracking behavior of soil layers during drying[J]. Journal of Materials in Civil Engineering, 2011, 23(6): 873-878.
    [28] DIVYA P V, VISWANADHAM B V S, GOURC J P. Evaluation of tensile strength-strain characteristics of fiber reinforced soil through laboratory tests[J]. Journal of Materials in Civil Engineering, 2014, 26(1): 14-23.
    [29] TANG C S, SHI B, CUI Y J, et al.Desiccation cracking behavior of polypropylene fiber-reinforced clayey soil[J]. Canadian Geotechnical Journal, 2012, 49(9): 1088-1101.
    [30] 施斌, 唐朝生, 王宝军, 等. 黏性土在不同温度下龟裂的发展及其机理讨论[J]. 高校地质学报, 2009, 15(2): 192-198.
    (SHI Bin, TANG Chao-sheng, WANG Bao-jun, et al.Development and mechanism of desiccation cracking of clayey soil under different temperatures[J]. Geological Journal of China Universities, 2009, 15(2): 192-198. (in Chinese))
    [31] 唐朝生, 施斌, 顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报, 2011, 19(6): 875-881.
    (TANG Chao-sheng, SHI Bin, GU Kai.Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 2011, 19(6): 875-881. (in Chinese))
    [32] WHITE D J, TAKE W A, BOLTON M D.Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-632.
  • 期刊类型引用(1)

    1. 程树范,叶阳,曾亚武,高睿. 基于损伤-虚拟张拉裂纹模型的地下爆炸围岩破坏规律研究. 爆炸与冲击. 2022(05): 172-184 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 1
出版历程
  • 收稿日期:  2017-06-06
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回