• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高吸力段黏土水合机制及微观持水模型研究

黄伟, 刘清秉, 项伟, 郎林智, 崔德山, 王菁莪

黄伟, 刘清秉, 项伟, 郎林智, 崔德山, 王菁莪. 高吸力段黏土水合机制及微观持水模型研究[J]. 岩土工程学报, 2018, 40(7): 1268-1276. DOI: 10.11779/CJGE201807013
引用本文: 黄伟, 刘清秉, 项伟, 郎林智, 崔德山, 王菁莪. 高吸力段黏土水合机制及微观持水模型研究[J]. 岩土工程学报, 2018, 40(7): 1268-1276. DOI: 10.11779/CJGE201807013
HUANG Wei, LIU Qing-bing, XIANG Wei, LANG Lin-zhi, CUI De-shan, WANG Jing-e. Hydration mechanism and microscopic water retention model of clay at high suction range[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1268-1276. DOI: 10.11779/CJGE201807013
Citation: HUANG Wei, LIU Qing-bing, XIANG Wei, LANG Lin-zhi, CUI De-shan, WANG Jing-e. Hydration mechanism and microscopic water retention model of clay at high suction range[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1268-1276. DOI: 10.11779/CJGE201807013

高吸力段黏土水合机制及微观持水模型研究  English Version

基金项目: 国家自然科学基金项目(41572286, 41672297, 41202199); 湖北省自然科学基金项目(2015CFB247)
详细信息
    作者简介:

    黄 伟(1990- ),男,博士研究生,主要从事黏土物化性质及特殊土改良方面的研究工作。E-mail:22huangwei@163.com。

    通讯作者:

    刘清秉,E-mail:liuqingbing_1357@163.com

  • 中图分类号: TU443

Hydration mechanism and microscopic water retention model of clay at high suction range

  • 摘要: 采用水汽吸附法测定3种蒙脱土在高吸力段的持水特征曲线,基于X射线衍射及BET吸附理论架构,提出了两类水合概化模型并建立了阳离子交换量、比表面积等参数的计算方法。基于极低相对湿度范围段(RH<0.15)持水能力只受控于层间阳离子水合的机理认识,通过阳离子与水分子相互作用能量方程,推导了极高吸力下(ψ>250 MPa)持水曲线微观参数模型。研究表明:层间阳离子水合能力的差异会导致蒙脱土吸附起始阶段呈现不同趋势,对于低水合能阳离子交换土,水分子首先吸附于黏土颗粒外表面,之后随相对湿度增加逐渐进入层间吸附,反之,则直接进入层间离子水合阶段;基于BET曲线计算的阳离子交换量、比表面积值与实测值之间吻合较好,构建的持水模型能够对文献报道数据进行有效预测,该模型可量化表征阳离子交换量、化合价、离子半价等微观参数对吸力势的影响程度。
    Abstract: The water retention curves of three montmorillonites are measured using the water vapor adsorption method at the high suction range. Two generalized hydration models and corresponding methods to predict the cation exchange capacity (CEC) and specific surface area (SSA) are proposed based on the XRD results and BET theory. Moreover, the microscopic water retention model at extremely high suction range (ψ>250 MPa) is derived from interaction energy between cation and water molecule dipole given that the retention capacity is affected merely by the interlayer cation hydration when RH is below 0.15. The results show that the hydration sequence of montmorillonite depends on the hydration energy of interlayer cation. For the cation with low hydration energy, the water absorbs firstly on external surface of clay tactoids followed by absorption into interlayer. Otherwise, the water absorbs directly within interlayer space. The predicted values of CEC and SSA agree well with the measured ones, and the derived microscopic model, taking into account of the effect of CEC, cation valence and radius on the suction potential, can predict the suction value accurately upon comparison with the reported data in literatures.
  • [1] LLORET A, VILLAR M V.Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite[J]. Physics and Chemistry of the Earth, 2007, 32(8): 701-715.
    [2] 孙文静, 孙德安, 刘仕卿, 等. 高吸力下高庙子钙基膨润土的土水-力学特性[J]. 岩土工程学报, 2014, 36(2): 346-353.
    (SUN Wen-jing, SUN De-an, LIU Shi-qing, et al.Hydro-mechanical behaviour of GMZ Ca-bentonite at high suctions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 346-353. (in Chinese))
    [3] YE W M, WAN M, CHEN B, et al.Effect of temperature on soil-water characteristics and hysteresis of compacted Gaomiaozi bentonite[J]. J Cent South Univ Technol, 2009, 16: 821-826.
    [4] TANG A M, CUI Y J.Controlling suction by vapour equilibrium technique at different temperatures, application to the determination of the water retention properties of MX80 clay[J]. Canadian Geotechnical Journal, 2005, 42(1): 287-296.
    [5] JACINTO A C, VILLAR M V, GÓMEZ-ESPINA R, et al. Adaptation of the van Genuchten expression to the effects of temperature and density for compacted bentonites[J]. Applied Clay Science, 2009, 42(3/4): 575-582.
    [6] SPOSITO G, PROST R.Structure of water adsorbed on smectites[J]. Chemical Reviews, 1982, 82(6): 553-573.
    [7] CASES J M, BEREND I, BESSON G, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite 1: the sodium-exchanged form[J]. Langmuir, 1992, 8(11): 2730-2739.
    [8] CASES J M.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite 3: the Mg2+, Ca2+, Sr2+ and Ba2+ Exchanged Forms[J]. Clays & Clay Minerals, 1997, 45(1): 8-22.
    [9] BEREND I, CASES J M, FRANCOIS M, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites 2: the Li+, Na+, K+, Rb+and Cs+-exchanged forms[J]. Clays & Clay Minerals, 1995, 43(3): 324-336.
    [10] SILVA O, GRIFOLL J.A soil‐water retention function that includes the hyper-dry region through the BET adsorption isotherm[J]. Water Resources Research, 2007, 431(11): 398-408.
    [11] HATCH C D, WIESE J S, CRANE C C, et al.Water adsorption on clay minerals as a function of relative humidity: application of bet and freundlich adsorption models[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2012, 28(3): 1790.
    [12] MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite i: heat of desorption and application of BET theory1[J]. Journal of the American Chemical Society, 1952, 74(6): 1367-1374.
    [13] DIOS C G, HUERTAS F J, ROMERO T E, et al.Adsorption of water vapor by homoionic montmorillonites: heats of adsorption and desorption[J]. Journal of Colloid & Interface Science, 1997, 185(2): 343-354.
    [14] KHORSHIDI M, LU N, AKIN I D, et al.Intrinsic relationship between specific surface area and soil water retention[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 143(1): 04016078.
    [15] WOODRUFF W F, REVIL A.CEC-normalized clay-water sorption isotherm[J]. Water Resour Res, 2011, 47: 553-561.
    [16] REVIL A, LU N.Unified water isotherms for clayey porous materials[J]. Water Resources Research, 2013, 49(9): 5685-5699.
    [17] AKIN I D.Clay surface properties by water vapor sorption methods[D]. Madison: University of Wisconsin-Madison, 2014.
    [18] MORODOME S, KAWAMURA K.Swelling behavior of Na- and Ca-montmorillonite up to 150°C by in situ X-ray diffraction experiments[J]. Clays & Clay Minerals, 2009, 57(2): 150-160.
    [19] FERRAGE, LANSON E, SAKHAROV B, et al.Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: part I. Montmorillonite hydration properties[J]. American Mineralogist, 2005, 90(8/9): 1358-1374.
    [20] BOHN H L, MCNEAL B L.Soil chemistry[M]. 2nd ed. New York: JohnWiley, 1985.
    [21] 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 北京: 化学工业出版社, 2005.
    (KONDO S, ISHIKAWA T, ABE I.Adsorption science[M]. LI Guo-xi, tran. Beijing: Chemical Industry Press, 2005. (in Chinese))
    [22] ISRAELACHVILI J N.Intermolecular and surface forces[M]. 3rd ed. Amsterdam: Elsevier, 2011.
    [23] FORESTIER L L, MULLER F, VILLIERAS F, et al.Textural and hydration properties of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue[J]. Applied Clay Science, 2010, 48(1): 18-25.
    [24] LIKOS W J, LU N.Pore-scale analysis of bulk volume change from crystalline interlayer swelling in Na+- and Ca2+-smectite[J]. Clays & Clay Minerals, 2006, 54(4): 515-528.
    [25] NITAO J J, BEAR J.Potentials and their role in transport in porous media[J]. Water Resource Res, 1996, 32(2): 225-250.
    [26] MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite: II effect of exchangeable Ions and lattice swelling as measured by X-Ray diffraction[J]. Journal of the American Chemical Society, 1952, 74(6): 1367-1374.
    [27] KEREN R.Water vapor isotherms and heat of immersion of Na/Ca-Montmorillonite systems—I: homoionic clay[J]. Clays & Clay Minerals, 1975, 23(3): 193-200.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-17
  • 发布日期:  2018-07-24

目录

    /

    返回文章
    返回