• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

冻土中气态水迁移及其对土体含水率的影响分析

贺佐跃, 张升, 滕继东, 姚仰平, 盛岱超

贺佐跃, 张升, 滕继东, 姚仰平, 盛岱超. 冻土中气态水迁移及其对土体含水率的影响分析[J]. 岩土工程学报, 2018, 40(7): 1190-1197. DOI: 10.11779/CJGE201807004
引用本文: 贺佐跃, 张升, 滕继东, 姚仰平, 盛岱超. 冻土中气态水迁移及其对土体含水率的影响分析[J]. 岩土工程学报, 2018, 40(7): 1190-1197. DOI: 10.11779/CJGE201807004
HE Zuo-yue, ZHANG Sheng, TENG Ji-dong, YAO Yang-ping, SHENG Dai-chao. Vapour transfer and its effects on water content in freezing soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1190-1197. DOI: 10.11779/CJGE201807004
Citation: HE Zuo-yue, ZHANG Sheng, TENG Ji-dong, YAO Yang-ping, SHENG Dai-chao. Vapour transfer and its effects on water content in freezing soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1190-1197. DOI: 10.11779/CJGE201807004

冻土中气态水迁移及其对土体含水率的影响分析  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目(2014CB047001); 国家自然科学基金项目(51508578)
详细信息
    作者简介:

    贺佐跃(1989- ),男,博士研究生,主要从事非饱和土水分迁移和热力学方面的研究。E-mail: hzykakaxi@126.com。

    通讯作者:

    张升,E-mail:13787261865@126.com

  • 中图分类号: TU43

Vapour transfer and its effects on water content in freezing soils

  • 摘要: 现有文献几乎尚未系统分析冻结条件下气态水对不同土性含水率的影响。基于热力学平衡理论及水热耦合理论,提出了未冻水含量和冰体积分数的计算方法,建立起新的耦合模型。该模型中最大未冻水含量和冰体积分数仅与水力参数和温度有关,具有明确的物理意义,与砂壤土的冻结试验结果对比也验证了新模型。模型分析结果表明:冻结条件下的气态水迁移主要受温度势而非基质势的作用,粉土和砂土中的气态水迁移是不能忽略的,而黏土中几乎没有气态水迁移;初始体积含水率、冻结温度、冻结时间及地下水位高度等都会对气态水的迁移有影响。总的来说,气态水对于粉土等冻胀敏感性土,即使较小的水分增加仍然能够产生显著冻胀,因此实际工程必须重视气态水的作用。本文分析加深了对“锅盖效应”的理解,也验证了“锅盖效应”通常发生在覆盖层下的粉土区域,而非砂土或黏土。
    Abstract: The effects of vapour on water content in different unsaturated frozen soils have not been systematically analyzed in the literatures. Based on the thermodynamic equilibrium theory and coupled water-heat theory, a new method for calculating unfrozen water content and ice content is obtained. A new model is then established by importing this method to the coupled heat and mass transfer theory. The unfrozen water content and ice content in this new model are only related to the hydraulic parameters and temperature, which have specific physical meanings. The comparisons between the simulations and the test results of sandy loam validate the new model. The simulated results also show that the temperature is the major factor to vapour transfer instead of the suction. And the vapour transfer in silt and sand cannot be neglected with freezing except clay. The initial water content, freezing temperature, freezing time and ground water table can all affect the vapour transfer in freezing soils. In a word, even though the water content increament is low, remarkable frost heave will also occur due to the vapour in susceptible frost heaving soils such as silt. Therefore, the vapour in unsaturated frozen soils must be paid more attention to in practical engineering. This study strengthens the understanding of canopy effect and also validates that the canopy effect usually occurs in covered freezing silt instead of sand or clay.
  • [1] SHENG D, ZHANG S, NIU F J, et al.A potential new frost heave mechanism in high-speed railway embankments[J]. Géotechnique, 2014, 64(2): 144.
    [2] HARLAN R L.Analysis of coupled heat‐fluid transport in partially frozen soil[J]. Water Resources Research, 1973, 9(5): 1314-1323.
    [3] GUYMON G L, LUTHIN J N.A coupled heat and moisture transport model for arctic soils[J]. Water Resources Research, 1974, 10(5): 995-1001.
    [4] TAYLOR G S, LUTHIN J N.A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15(4): 548-555.
    [5] KUNG S K J, STEENHUIS T S. Heat and moisture transfer in a partly frozen nonheaving soil[J]. Soil Science Society of America Journal, 1986, 50(5): 1114-1122.
    [6] ZHOU J, WEI C, LI D, et al.A moving-pump model for water migration in unsaturated freezing soil[J]. Cold Regions Science and Technology, 2014, 104: 14-22.
    [7] MILLY P C D. A simulation analysis of thermal effects on evaporation from soil[J]. Water Resources Research, 1984, 20(8): 1087-1098.
    [8] 李强, 姚仰平, 韩黎明, 等. 土体的“锅盖效应”[J]. 工业建筑, 2014, 44(2): 69-71.
    (LI Qiang, YAO Yao-ping, HAN Li-ming, et al.Pot-cover effect of soil[J]. Industrial Construction, 2014, 44(2): 69-71. (in Chinese))
    [9] SAITO H, ŠIMŮNEK J, MOHANTY B P. Numerical analysis of coupled water, vapor, and heat transport in the vadose zone[J]. Vadose Zone Journal, 2006, 5(2): 784-800.
    [10] NAKANO Y, TICE A, OLIPHANT J.Transport of water in frozen soil IV: analysis of experimental results on the effects of ice content[J]. Advances in Water Resources, 1984, 7(2): 58-66.
    [11] EIGENBROD K, KENNEPOHL G.Moisture accumulation and pore water pressures at base of pavements[J]. Transportation Research Record: Journal of the Transportation Research Board, 1996(1546): 151-161.
    [12] GUTHRIE W S, HERMANSSON Å, WOFFINDEN K H.Saturation of granular base material due to water vapor flow during freezing: laboratory experimentation and numerical modeling[C]// Current Practices in Cold Regions Engineering. Orono, 2006: 1-12.
    [13] ZHANG S, TENG J, HE Z, et al.Canopy effect caused by vapour transfer in covered freezing soils[J]. Géotechnique, 2016, 66(11): 927-940.
    [14] HANSSON K, ŠIMŮNEK J, MIZOGUCHI M, et al. Water flow and heat transport in frozen soil[J]. Vadose Zone Journal, 2004, 3(2): 693-704.
    [15] NASSAR I N, HORTON R.Water transport in unsaturated nonisothermal salty soil II: theoretical development[J]. Soil Science Society of America Journal, 1989, 53(5): 1330-1337.
    [16] NASSAR I N, HORTON R.Simultaneous transfer of heat, water, and solute in porous media I: theoretical development[J]. Soil Science Society of America Journal, 1992, 56(5): 1350-1356.
    [17] NEWMAN G P, WILSON G W.Heat and mass transfer in unsaturated soils during freezing[J]. Canadian Geotechnical Journal, 1997, 34(1): 63-70.
    [18] KELLENERS T J.Coupled water flow and heat transport in seasonally frozen soils with snow accumulation[J]. Vadose Zone Journal, 2013, 12(4): 108-118.
    [19] KELLENERS T J, KOONCE J, SHILLITO R, et al.Numerical modeling of coupled water flow and heat transport in soil and snow[J]. Soil Science Society of America Journal, 2016, 80(2): 247-263.
    [20] LI Q, SUN S, XUE Y.Analyses and development of a hierarchy of frozen soil models for cold region study[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: 1-118.
    [21] WANG A W, XIE Z H, FENG X B, et al.A soil water and heat transfer model including changes in soil frost and thaw fronts[J]. Science China Earth Sciences, 2014, 57(6): 1325-1339.
    [22] SHENG D, AXELSSON K, KNUTSSON S.Frost heave due to ice lens formation in freezing soils[J]. Hydrology Research, 1995, 26(2): 125-146.
    [23] SHENG D, ZHANG S, YU Z, et al.Assessing frost susceptibility of soils using PCHeave[J]. Cold Regions Science and Technology, 2013, 95: 27-38.
    [24] WILLIAMS P J.Properties and behavior of freezing soils[M]. Oslo: Norwegian Geotechnical Institute, 1967.
    [25] ZHANG X, SUN S F, XUE Y.Development and testing of a frozen soil parameterization for cold region studies[J]. Journal of Hydrometeorology, 2007, 8(4): 690-701.
    [26] MIZOGUCHI M.Water, heat and salt transport in freezing soil[D]. Tokyo: University of Tokyo, 1990.
    [27] CARSEL R F, PARRISH R S.Developing joint probability distributions of soil water retention characteristics[J]. Water Resources Research, 1988, 24(5): 755-769.
    [28] ZHANG S, SHENG D, ZHAO G, et al.Analysis of frost heave mechanisms in a high-speed railway embankment[J]. Canadian Geotechnical Journal, 2015, 53(3): 520-529.
    [29] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [30] MUALEM Y.A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.
    [31] TAYLOR G S, LUTHIN J N.A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15(4): 548-555.
    [32] LAI Y, PEI W, ZHANG M, et al.Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil[J]. International Journal of Heat and Mass Transfer, 2014, 78: 805-819.
    [33] MCKENZIE J M, VOSS C I, SIEGEL D I.Groundwater flow with energy transport and water-ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs[J]. Advances in Water Resources, 2007, 30(4): 966-983.
    [34] WU D, LAI Y, ZHANG M.Heat and mass transfer effects of ice growth mechanisms in a fully saturated soil[J]. International Journal of Heat and Mass Transfer, 2015, 86: 699-709.
计量
  • 文章访问数:  377
  • HTML全文浏览量:  14
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-24
  • 发布日期:  2018-07-24

目录

    /

    返回文章
    返回