• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

抗土洞塌陷的低填方加筋路基荷载传递机制及设计方法

陈福全, 赖丰文

陈福全, 赖丰文. 抗土洞塌陷的低填方加筋路基荷载传递机制及设计方法[J]. 岩土工程学报, 2018, 40(7): 1180-1189. DOI: 10.11779/CJGE201807003
引用本文: 陈福全, 赖丰文. 抗土洞塌陷的低填方加筋路基荷载传递机制及设计方法[J]. 岩土工程学报, 2018, 40(7): 1180-1189. DOI: 10.11779/CJGE201807003
CHEN Fu-quan, LAI Feng-wen. Load transfer mechanisms and design method of low geosynthetic-reinforced embankments subjected to localized sinkholes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1180-1189. DOI: 10.11779/CJGE201807003
Citation: CHEN Fu-quan, LAI Feng-wen. Load transfer mechanisms and design method of low geosynthetic-reinforced embankments subjected to localized sinkholes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1180-1189. DOI: 10.11779/CJGE201807003

抗土洞塌陷的低填方加筋路基荷载传递机制及设计方法  English Version

基金项目: 国家自然科学基金项目(41572253)
详细信息
    作者简介:

    陈福全(1971- ),男,博士,教授,主要从事土力学与岩土工程教学与科研工作。E-mail:phdchen@fzu.edu.cn。

  • 中图分类号: TU432

Load transfer mechanisms and design method of low geosynthetic-reinforced embankments subjected to localized sinkholes

  • 摘要: 低填方加筋路基对地基承载力要求较低,同时利用水平加筋法跨越尺寸较小的土洞能有效预防路堤出现突发式局部沉陷,提高路堤抗工后沉降和失稳的安全系数,正被逐步应用于岩溶土洞地区道路工程;但其作用机理复杂,现存设计方法大都偏于保守,考虑抗土洞塌陷的低填方加筋路基荷载传递机制的设计方法亟待提出。通过揭示受土洞塌陷影响的低填方加筋路基荷载传递机制,推导了考虑路基差异沉降引起土体应力偏转的竖向应力计算方法,假定塌陷区上方加筋体作用抛物线荷载,从而明晰了加筋体应力-应变状态;应对岩溶区不同形态的土洞塌陷,同时考虑设计需要满足的正常使用极限状态与承载能力极限状态,提出了抗土洞塌陷的低填方加筋路基加筋体及路堤填方高度设计方法,通过与现有设计方法的对比进行了合理性及准确性验证,可为空洞上方低填方加筋路基设计提供参考。
    Abstract: Low geosynthetic-reinforced embankments have a higher bearing capacity. In addition, the horizontal geosynthetics can prevent embankment from collapsing suddenly, which plays a warning role. The design of geosynthetic-reinforced platforms based on the load transfer mechanisms of low embankment in karstic regions should be proposed, for which the existing design methods are not recommended because of the complex mechanisms. By analyzing the stress-strain relations of the platform, the design considering the principal stress rotation due to differential settlements is improved and optimized under the assumption that there is a parabolic overload distribution perpendicular to the sheet overlying the void. The design method for the tensile stiffness of geosynthetic-reinforced sheet and the embankment height based on the load transfer mechanisms of low reinforced embankment spanning the sinkholes is proposed, containing different forms of surface subsidence and can be applied to the serviceability limit state design and the ultimate limit state design simultaneously. The accuracy and rationality of the proposed method are verified by comparisons of the current design methods so as to provide a reference for such structures.
  • [1] 吕伟华, 缪林昌, 王非. 基于不完全土拱效应的土工格栅加固机制与设计方法[J]. 岩石力学与工程学报, 2012, 31(3): 632-639. (LU Wei-hua, MIAO Lin-chang, WANG Fei. Mechanism of geogrid reinforcement based on partially
    developed soil arch effect and design method[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 632-639. (in Chinese))
    [2] 王非, 缪林昌. 落水洞上覆路堤土工加筋设计新方法[J]. 东南大学学报 (自然科学版), 2009, 39(6): 1217-1221.
    (WANG Fei, MIAO Lin-chang.New design method of geosynthetic-reinforced embankment over sinkholes[J]. Journal of Southeast University (Natural Science Editon), 2009, 39(6): 1217-1221. (in Chinese))
    [3] BRIANÇON L, HUCKERT A, VILLARD P, et al. Experimental and numerical approaches of the design of geotextile-reinforced embankments prone to sinkholes[C]// International Conference on Geosynthetics. Berlin, 2014.
    [4] FU L L, GONG Q M, WANG Y. Analysis on dynamic transfer characteristics of low geosynthetic-reinforced embankments supported by CFG piles subjected to high-speed railway[J]. Advanced Materials Research, 2011, 368-373: 2575-2580.
    [5] 陈炳初. 土工格室低路堤—刚性路面体系理论分析与试验研究[D]. 长沙: 湖南大学, 2013.
    (CHEN Bing-chu.Theory analysis and experiment research of geocell reinforced low embankment and rigid pavement system[D]. Changsha: Hunan University, 2013.(in Chinese))
    [6] BRIANÇON L,VILLARD P. Design of geosynthetic- reinforced platforms spanning localized sinkholes[J]. Geotextiles & Geomembranes, 2008, 26(5): 416-428.
    [7] VILLARD P V, BRIANÇON L B. Design of geosynthetic reinforcements for platforms subjected to localized sinkholes[J]. Canadian Geotechnical Journal, 2008, 45(2): 196-209.
    [8] VILLARD P, GOURC J, GIRAUD H.A geosynthetic reinforcement solution to prevent the formation of localized sinkholes[J]. Canadian Geotechnical Journal, 2000, 37(5): 987-999.
    [9] VILLARD P, HUCKERT A, BRIANÇON L. Load transfer mechanisms in geotextile-reinforced embankments overlying voids: Numerical approach and design[J]. Geotextile & Geomembrane, 2016, 44(3): 381-395.
    [10] GIROUD J P, BONAPARTE R, BEECH J F, et al.Design of soil layer-geosynthetic systems overlying voids[J]. Geotextiles & Geomembranes, 1990, 9(1): 11-50.
    [11] SOCIETY T G G. Recommendations for design and analysis of earth structures using geosynthetic reinforcements- EBGEO[M]. Berlin: Wilhelm Ernst & Sohn, 2011.
    [12] British Standard Institution.Code of practice for strengthened/ reinforced soils and other fills[S]. London: British Standard Institution, 2010.
    [13] TERZAGHI K.Theoretical soil mechanics[M]. New York: John Wiley and Sons, 1943: 37-42.
    [14] HANDY R L.The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-318.
    [15] DEWOOLKAR M M, SANTICHAIANANT K, KO H Y.Centrifuge modeling of granular soil response over active circular trapdoors[J]. Soils and Foundations, 2007, 47(5): 931-945.
    [16] RUI R, VAN TOL A, XIA Y, et al.Investigation of soil-arching development in dense sand by 2D model tests[J]. Geotechnical Testing Journal, 2016, 39(3): 1-16.
    [17] CHEVALIER B, COMBE G, VILLARD P.Experimental and numerical studies of load transfers and arching effect[C]// Proc 12th Int Conf of the Int Association for Computer and Advances in Geomechanics (IACMAG). Goa, 2008: 273-280.
    [18] CHEVALIER B, VILLARD P, COMBE G.Investigation of load-transfer mechanisms in geotechnical earth structures with thin fill platforms reinforced by rigid inclusions[J]. International Journal of Geomechanics, 2010, 11(3): 239-250.
    [19] CHEVALIER B, COMBE G, VILLARD P.Experimental and discrete element modeling studies of the trapdoor problem: influence of the macro-mechanical frictional parameters[J]. Acta Geotechnica, 2012, 7(1): 15-39.
    [20] JTGD30—2004 公路路基设计规范[S]. 2004.
    (JTGD30—2004 Specifications for design of highway subgrades[S]. 2004. (in Chinese))
    [21] 黎春林. 盾构隧道施工松动土压力计算方法研究[J]. 岩土工程学报, 2014, 36(9): 1714-1720.
    (LI Chun-lin.Method for calculating loosening earth pressure during construction of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1714-1720. (in Chinese))
    [22] HUCKERT A, BRIANÇON L, VILLARD P, et al. Load transfer mechanisms in geotextile-reinforced embankments overlying voids: experimental and analytical approaches[J]. Geotextiles & Geomembranes, 2016, 44(3): 442-456.
    [23] GOURC J P,VILLARD P.Reinforcement by membrane effect: application to embankments on soil liable to subsidence[C]// Proceedings of the 2nd Asian Geosynthetics Conference. Kuala Lumpur, West Plam Beach, 2000: 55-72.
    [24] PALMEIRA E M.Soil-geosynthetic interaction: modelling and analysis[J]. Geotextiles & Geomembranes, 2009, 27(5): 368-390.
    [25] BLIVET J,GOURC J,VILLARD P, et al.Design method for geosynthetic as reinforcement for embankment subjected to localized subsidence[C]// Proceedings of the Seventh International Conference on Geosynthetics. France, 2002: 341-344.
    [26] JGJ/T D32—2012公路土工合成材料应用技术规范[S]. 2012.
    (JGJ/T D32—2012 Technical specifications for applications of geosynthetics in highway[S]. 2004. (in Chinese))
  • 期刊类型引用(1)

    1. 刘祥宁,张文杰. 酸性干湿循环下铬污染土固化体浸出行为研究. 岩土力学. 2025(04): 1196-1204 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2017-04-19
  • 发布日期:  2018-07-24

目录

    /

    返回文章
    返回