• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

温度对微生物诱导碳酸钙沉积加固砂土的影响研究

彭劼, 冯清鹏, 孙益成

彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048-1055. DOI: 10.11779/CJGE201806010
引用本文: 彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048-1055. DOI: 10.11779/CJGE201806010
PENG Jie, FENG Qing-peng, SUN Yi-cheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048-1055. DOI: 10.11779/CJGE201806010
Citation: PENG Jie, FENG Qing-peng, SUN Yi-cheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048-1055. DOI: 10.11779/CJGE201806010

温度对微生物诱导碳酸钙沉积加固砂土的影响研究  English Version

基金项目: 国家自然科学基金项目(51578214)
详细信息
    作者简介:

    彭 劼(1971- ),男,湖南衡阳人,教授,博士生导师,主要从事软基处理相关研究。E-mail: peng-jie@hhu.edu.cn。

Influences of temperatures on MICP-treated soils

  • 摘要: 利用尿素水解菌ATCC 11859,在10℃,20℃,30℃的环境下进行了微生物诱导碳酸钙沉积(MICP)水溶液试验、一维砂柱加固试验和细菌活性试验。研究表明,水溶液试验中,温度对于MICP的影响和反应时间有关,反应前期,温度较高的环境下钙离子消耗量较大,反应一段时间后温度较低的环境下钙离子消耗量较大;砂柱试验中,温度较低的环境下加固形成的砂样无侧限抗压强度较大,碳酸钙含量的检测表明,环境温度越高,砂柱中生成的碳酸钙含量越低;无侧限压缩试验的应力应变关系表明,相对低温条件下MICP处理的砂样在达到峰值强度时能够产生较大的变形;不同温度下细菌活性试验表明,细菌活性衰减较快是高温环境下碳酸钙的最终沉积量较小的原因。
    Abstract: A series of aqueous tests, one-dimesion sand column trials and bacterial activity tests using the ureolytic bacteria ATCC11859 are conducted to investigate the influences of temperatures (10℃, 20℃ and 30℃) on the microbially induced carbonate precipitation (MICP). The results show that in the aqueous tests, the effect of temperatures on the MICP is related to the reaction time; at the early stage, the consumption of calcium ion is much more at the higher temperature environment; after a period of time of the reaction, the consumption of calcium ion is much more at the lower temperature. In the sand column trials, the unconfined compressive strength of the sand samples after consolidation at the lower temperature is greater than that at the higher one, and the results of the calcium carbonate content of the samples show that the content of calcium carbonate in the sand columns is much lower at the higher temperature than that at the lower one. The stress-strain relationship of the unconfined compression tests shows that the sand column treated by MICP in the lower temperature environment can produce a larger deformation when the peak strength is reached. The bacterial activity tests under different temperatures show that the rapid decline in bacterial activity is the reason why the final amount of calcium carbonate is lower at the higher temperature.
  • [1] DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al.Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210.
    [2] DEJONG J T, SOGA K, KAVAZANJIAN E, et al.Biogeoch- emical processe sand geotechnical applications: progress opp-ortunities sand challenges[J]. Géotechnique, 2013, 63(4): 287-301.
    [3] IVANOV V, CHU J.Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ[J]. Reviews in Environmental Science and Biotechnology, 2008, 7(2): 139-153.
    [4] WHIFFIN V S.Microbial CaCO3 precipitation for the production of Biocement[D]. Perth: Morduch University, 2004.
    [5] DE MUYNCK W, DE BELIE N, VERSTRAETE W.Microbial carbonate precipitation in construction materials: A review[J]. Ecological Engineering, 2010, 36(2): 118-136.
    [6] DHAMI N K, REDDY M S, MUKHERJEE A.Biomineralization of calcium carbonates and their engineered applications: a review[J]. Frontiers in Microbiology, 2013, 314(4): 1-13.
    [7] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653.
    (HE Jia, CHU Jian, LIU Han-long, et al.Research Advances in Biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese))
    [8] WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiol J, 2007, 24(5): 417-23.
    [9] MARTINEZ B C, DEJONG J T, Ginn T R, et al.Experimental optimization of microbial-induced carbonate precipitation for soil improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(4): 587-598.
    [10] HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-7.
    [11] ZHAO Q, LI L, LI C, et al.Factors affecting improvement of engineering properties of MICP-Treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering, 2014, 26(12): 04014094.
    [12] VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728.
    [13] CHU J, IVANOV V, NAEIMI M, et al.Optimization of calcium-based bioclogging and biocementation of sand[J]. Acta Geotechnica, 2014, 9(2): 277-285.
    [14] MORTENSEN B M, HABER M J, DEJONG J T, et al.Effects of environmental factors on microbial induced calcium carbonate precipitation[J]. Journal of Applied Microbiology, 2011, 111(2): 338-349.
    [15] AL QABANY A, SOGA K, SANTAMARINA C.Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8): 992-1001.
    [16] OKWADHA G D O, LI J. Optimum conditions for mic-robial carbonate precipitation[J]. Chemosphere, 2010, 81(9): 1143-1148.
    [17] SOON N W, LEE L M, KHUN T C, et al.Improvements in engineering properties of soils through microbial-induced calcite precipitation[J]. KSCE Journal of Civil Engineering, 2013, 17(4): 718-728.
    [18] OLIVEIRA P J V, FREITAS L D, CARMONA J P S F. Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement[J]. Journal of Materials in Civil Engineering, 2016, 29(4): 04016263.
    [19] DEJONG J T, FRITZGES M B, NUSSLEIN K.Microbially induced cementation to control sand response to undrained shear[J]. J Geotech Geoenviron, 2006, 132(11): 1381-1392.
    [20] MONTOYA B M, DEJONG J T.Stress-strain behavior of sands cemented by microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(6): 04015019.
    [21] MONTOYA B, FENG K.Deformation of microbial induced calcite bonded sands: a micro-scale investigation[M]. Amsterdam: Ios Press, 2015.
    [22] VENULEO S, LALOUI L, TERZIS D, et al.Microbially induced calcite precipitation effect on soil thermal conductivity[J]. Géotechnique Letters, 2016, 6(1): 39-44.
    [23] CHOI S G, WANG K, CHU J.Properties of biocemented, fiber reinforced sand[J]. Construction and Building Materials, 2016, 120: 623-629.
    [24] LI M, LI L, OGBONNAYA U, et al.Influence of fiber addition on mechanical properties of MICP-treated sand[J]. Journal of Materials in Civil Engineering, 2015, 28(4): 04015166.
    [25] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495.
    (CHENG Xiao-hui, MA Qiang, YANG Zuan, et al.Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese))
    [26] HAN Z G, CHENG X H, MA Q.An experimental study on dynamic response for MICP strengthening liquefiable sands[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(4): 673-679.
    [27] 许朝阳, 周锋, 孟涛, 等. 铁基灌浆对液化粉土动力特性的改性研究[J]. 建筑材料学报, 2015, 18(6): 1055-1059.
    (XU Zhao-yang, ZHOU Feng, MENG Tao, et al.Improvement of dynamic characteristics of liquefaction silt using iron-based bio-grouting[J]. Journal of Building Materials, 2015,18(06): 1055-1059. (in Chinese))
    [28] CACCHIO P, ERCOLE C, CAPPUCCIO G, et al.Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil[J]. Geomicrobiol J, 2003, 20(2): 85-98.
    [29] ZAMARRENO D V, MAY E, INKPEN R.Influence of environmental temperature on biocalcification by non-sporing freshwater bacteria[J]. Geomicrobiol J, 2009, 26(4): 298-309.
    [30] DE MUYNCK W, VERBEKEN K, DE BELIE N, et al.Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation[J]. Appl Microbiol Biot, 2013, 97(3): 1335-1347.
    [31] 彭劼, 何想, 刘志明, 等. 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报, 2016, 38(10): 1769-1774.
    (PENG Jie, HE Xiang, LIU Zhi-ming, et- al. Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1769-1774. (in Chinese))
    [32] NEMATI M, VOORDOUW G.Modification of porous media permeability, using calcium carbonate produced enzymatically in situ[J]. Enzyme and Microbial Technology, 2003, 33(5): 635-642.
    [33] FERRIS F G, PHOENIX V, FUJITA Y, et al.Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20℃ in artificial groundwater[J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1701-10.
    [34] MITCHELL A C, FERRIS F G.The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence[J]. Geochimica et Cosmochimica Acta, 2005, 69(17): 4199-210.
计量
  • 文章访问数:  530
  • HTML全文浏览量:  22
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-22
  • 发布日期:  2018-06-24

目录

    /

    返回文章
    返回