• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

温度对微生物诱导碳酸钙沉积加固砂土的影响研究

彭劼, 冯清鹏, 孙益成

彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048-1055. DOI: 10.11779/CJGE201806010
引用本文: 彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048-1055. DOI: 10.11779/CJGE201806010
PENG Jie, FENG Qing-peng, SUN Yi-cheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048-1055. DOI: 10.11779/CJGE201806010
Citation: PENG Jie, FENG Qing-peng, SUN Yi-cheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048-1055. DOI: 10.11779/CJGE201806010

温度对微生物诱导碳酸钙沉积加固砂土的影响研究  English Version

基金项目: 国家自然科学基金项目(51578214)
详细信息
    作者简介:

    彭 劼(1971- ),男,湖南衡阳人,教授,博士生导师,主要从事软基处理相关研究。E-mail: peng-jie@hhu.edu.cn。

Influences of temperatures on MICP-treated soils

  • 摘要: 利用尿素水解菌ATCC 11859,在10℃,20℃,30℃的环境下进行了微生物诱导碳酸钙沉积(MICP)水溶液试验、一维砂柱加固试验和细菌活性试验。研究表明,水溶液试验中,温度对于MICP的影响和反应时间有关,反应前期,温度较高的环境下钙离子消耗量较大,反应一段时间后温度较低的环境下钙离子消耗量较大;砂柱试验中,温度较低的环境下加固形成的砂样无侧限抗压强度较大,碳酸钙含量的检测表明,环境温度越高,砂柱中生成的碳酸钙含量越低;无侧限压缩试验的应力应变关系表明,相对低温条件下MICP处理的砂样在达到峰值强度时能够产生较大的变形;不同温度下细菌活性试验表明,细菌活性衰减较快是高温环境下碳酸钙的最终沉积量较小的原因。
    Abstract: A series of aqueous tests, one-dimesion sand column trials and bacterial activity tests using the ureolytic bacteria ATCC11859 are conducted to investigate the influences of temperatures (10℃, 20℃ and 30℃) on the microbially induced carbonate precipitation (MICP). The results show that in the aqueous tests, the effect of temperatures on the MICP is related to the reaction time; at the early stage, the consumption of calcium ion is much more at the higher temperature environment; after a period of time of the reaction, the consumption of calcium ion is much more at the lower temperature. In the sand column trials, the unconfined compressive strength of the sand samples after consolidation at the lower temperature is greater than that at the higher one, and the results of the calcium carbonate content of the samples show that the content of calcium carbonate in the sand columns is much lower at the higher temperature than that at the lower one. The stress-strain relationship of the unconfined compression tests shows that the sand column treated by MICP in the lower temperature environment can produce a larger deformation when the peak strength is reached. The bacterial activity tests under different temperatures show that the rapid decline in bacterial activity is the reason why the final amount of calcium carbonate is lower at the higher temperature.
  • [1] DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al.Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210.
    [2] DEJONG J T, SOGA K, KAVAZANJIAN E, et al.Biogeoch- emical processe sand geotechnical applications: progress opp-ortunities sand challenges[J]. Géotechnique, 2013, 63(4): 287-301.
    [3] IVANOV V, CHU J.Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ[J]. Reviews in Environmental Science and Biotechnology, 2008, 7(2): 139-153.
    [4] WHIFFIN V S.Microbial CaCO3 precipitation for the production of Biocement[D]. Perth: Morduch University, 2004.
    [5] DE MUYNCK W, DE BELIE N, VERSTRAETE W.Microbial carbonate precipitation in construction materials: A review[J]. Ecological Engineering, 2010, 36(2): 118-136.
    [6] DHAMI N K, REDDY M S, MUKHERJEE A.Biomineralization of calcium carbonates and their engineered applications: a review[J]. Frontiers in Microbiology, 2013, 314(4): 1-13.
    [7] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653.
    (HE Jia, CHU Jian, LIU Han-long, et al.Research Advances in Biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese))
    [8] WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiol J, 2007, 24(5): 417-23.
    [9] MARTINEZ B C, DEJONG J T, Ginn T R, et al.Experimental optimization of microbial-induced carbonate precipitation for soil improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(4): 587-598.
    [10] HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-7.
    [11] ZHAO Q, LI L, LI C, et al.Factors affecting improvement of engineering properties of MICP-Treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering, 2014, 26(12): 04014094.
    [12] VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728.
    [13] CHU J, IVANOV V, NAEIMI M, et al.Optimization of calcium-based bioclogging and biocementation of sand[J]. Acta Geotechnica, 2014, 9(2): 277-285.
    [14] MORTENSEN B M, HABER M J, DEJONG J T, et al.Effects of environmental factors on microbial induced calcium carbonate precipitation[J]. Journal of Applied Microbiology, 2011, 111(2): 338-349.
    [15] AL QABANY A, SOGA K, SANTAMARINA C.Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8): 992-1001.
    [16] OKWADHA G D O, LI J. Optimum conditions for mic-robial carbonate precipitation[J]. Chemosphere, 2010, 81(9): 1143-1148.
    [17] SOON N W, LEE L M, KHUN T C, et al.Improvements in engineering properties of soils through microbial-induced calcite precipitation[J]. KSCE Journal of Civil Engineering, 2013, 17(4): 718-728.
    [18] OLIVEIRA P J V, FREITAS L D, CARMONA J P S F. Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement[J]. Journal of Materials in Civil Engineering, 2016, 29(4): 04016263.
    [19] DEJONG J T, FRITZGES M B, NUSSLEIN K.Microbially induced cementation to control sand response to undrained shear[J]. J Geotech Geoenviron, 2006, 132(11): 1381-1392.
    [20] MONTOYA B M, DEJONG J T.Stress-strain behavior of sands cemented by microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(6): 04015019.
    [21] MONTOYA B, FENG K.Deformation of microbial induced calcite bonded sands: a micro-scale investigation[M]. Amsterdam: Ios Press, 2015.
    [22] VENULEO S, LALOUI L, TERZIS D, et al.Microbially induced calcite precipitation effect on soil thermal conductivity[J]. Géotechnique Letters, 2016, 6(1): 39-44.
    [23] CHOI S G, WANG K, CHU J.Properties of biocemented, fiber reinforced sand[J]. Construction and Building Materials, 2016, 120: 623-629.
    [24] LI M, LI L, OGBONNAYA U, et al.Influence of fiber addition on mechanical properties of MICP-treated sand[J]. Journal of Materials in Civil Engineering, 2015, 28(4): 04015166.
    [25] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495.
    (CHENG Xiao-hui, MA Qiang, YANG Zuan, et al.Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese))
    [26] HAN Z G, CHENG X H, MA Q.An experimental study on dynamic response for MICP strengthening liquefiable sands[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(4): 673-679.
    [27] 许朝阳, 周锋, 孟涛, 等. 铁基灌浆对液化粉土动力特性的改性研究[J]. 建筑材料学报, 2015, 18(6): 1055-1059.
    (XU Zhao-yang, ZHOU Feng, MENG Tao, et al.Improvement of dynamic characteristics of liquefaction silt using iron-based bio-grouting[J]. Journal of Building Materials, 2015,18(06): 1055-1059. (in Chinese))
    [28] CACCHIO P, ERCOLE C, CAPPUCCIO G, et al.Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil[J]. Geomicrobiol J, 2003, 20(2): 85-98.
    [29] ZAMARRENO D V, MAY E, INKPEN R.Influence of environmental temperature on biocalcification by non-sporing freshwater bacteria[J]. Geomicrobiol J, 2009, 26(4): 298-309.
    [30] DE MUYNCK W, VERBEKEN K, DE BELIE N, et al.Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation[J]. Appl Microbiol Biot, 2013, 97(3): 1335-1347.
    [31] 彭劼, 何想, 刘志明, 等. 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报, 2016, 38(10): 1769-1774.
    (PENG Jie, HE Xiang, LIU Zhi-ming, et- al. Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1769-1774. (in Chinese))
    [32] NEMATI M, VOORDOUW G.Modification of porous media permeability, using calcium carbonate produced enzymatically in situ[J]. Enzyme and Microbial Technology, 2003, 33(5): 635-642.
    [33] FERRIS F G, PHOENIX V, FUJITA Y, et al.Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20℃ in artificial groundwater[J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1701-10.
    [34] MITCHELL A C, FERRIS F G.The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence[J]. Geochimica et Cosmochimica Acta, 2005, 69(17): 4199-210.
  • 期刊类型引用(44)

    1. 戴迪,彭劼,刘志明,卫仁杰,李亮亮. 微生物注浆固化砂土均匀性的试验研究. 南京林业大学学报(自然科学版). 2025(01): 217-224 . 百度学术
    2. 肖瑶,邓华锋,李建林,熊雨,程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果. 材料导报. 2024(01): 209-215 . 百度学术
    3. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
    4. 王双娇,李志清,田怡帆,李燕明,周应新,李丹丹. 微生物岩土工程技术的过去、现在与未来. 工程地质学报. 2024(01): 236-264 . 百度学术
    5. 张永杰,唐银港,欧阳健,罗志敏,谭长江. 微生物诱导碳酸钙沉淀技术对花岗岩残积土渗透性的影响规律研究. 交通科学与工程. 2024(03): 1-8+107 . 百度学术
    6. Yingxin Zhou,Zhiqing Li,Peng Zhang,Qi Wang,Weilin Pan,Shuangjiao Wang,Xiongyao Xie. Research status, hot spots, difficulties and future development direction of microbial geoengineering. Journal of Road Engineering. 2024(02): 234-255 . 必应学术
    7. 朱文羲,邓华锋,李建林,熊雨,程雷,黄小芸,陈勇琪. 沸石增强砂土微生物固化效果研究. 辽宁工程技术大学学报(自然科学版). 2024(03): 304-309 . 百度学术
    8. 李雨杰,国振,李艺隆,芮圣洁,朱永强. 岛礁工程MICP加固技术研究进展. 工程科学学报. 2023(05): 819-832 . 百度学术
    9. 姚姬璇,吴雨瑶,陈卓,段金贵,赵晓娟,田堪良. 微生物固化风沙土的保水性能试验研究. 水土保持通报. 2023(02): 104-112+128 . 百度学术
    10. 赵蒙,邓瑞,谭博仁,张旭,杨美林. MICP固化土体影响因素研究进展. 成都大学学报(自然科学版). 2023(03): 307-311 . 百度学术
    11. 肖维民,傅业姗,钟建敏,林馨,李双. 岩石节理中MICP反应碳酸钙沉积演化规律试验研究. 岩石力学与工程学报. 2023(S2): 3851-3860 . 百度学术
    12. 张建伟,赵聪聪,尹悦,石磊,边汉亮,韩智光. 紫外诱变产脲酶菌株加固粉土的试验研究. 岩土工程学报. 2023(12): 2500-2509 . 本站查看
    13. 胡坪伸,张文,赵媛,杨晓旭,侯福星,袁媛. 青海强盐渍粉砂土MICP的有效性探索. 土木工程学报. 2022(03): 65-73 . 百度学术
    14. 肖瑶,邓华锋,李建林,程雷,朱文羲. 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究. 岩土力学. 2022(02): 395-404 . 百度学术
    15. 林泓民,卫仁杰,李亮亮,温智力,彭劼. 黄原胶改进MICP加固效果的试验研究. 河南科学. 2022(04): 618-627 . 百度学术
    16. 赵常,何想,胡冉,刘汉龙,谢强,王誉泽,吴焕然,肖杨. 微生物矿化动力学理论与模拟. 岩土工程学报. 2022(06): 1096-1105 . 本站查看
    17. 王海良,陈仓,荣辉,李莹,陈禹廷,张颖,张津瑞,王剑云. 基于微生物的水泥基材料裂缝自修复技术研究进展. 科技导报. 2022(15): 90-103 . 百度学术
    18. 程雷,肖瑶,邓华锋,熊雨,彭萌,支永艳,李文华. 一株本源产脲酶细菌的分离培养及其在裂隙岩体加固中的应用. 岩土力学. 2022(S2): 307-314 . 百度学术
    19. 曹晨,赵志峰,王玮. 养护温度和冻融循环等对微生物胶结试样强度的影响. 防灾减灾工程学报. 2022(05): 1046-1052 . 百度学术
    20. 肖海,胡欢,吕广柳,张文琪,朱志恩,向瑞,杨悦舒,夏振尧,旺杰. 微生物诱导碳酸钙沉淀影响因素研究进展分析. 三峡大学学报(自然科学版). 2022(06): 66-75 . 百度学术
    21. 谈刘鑫,陶磊,王淼,陈阳. 微生物诱导CaCO_3加固土体的影响因素和应用进展. 山西建筑. 2022(24): 92-95 . 百度学术
    22. 郝闪,刘松涛,李思瑶,华阳. 脲解型微生物诱导矿化沉积的研究进展. 中国建材科技. 2022(05): 73-77 . 百度学术
    23. 赵寄橦,童华炜,邱荣康,刘家明,袁杰,张子良. 不同活性炭含量下MICP加固钙质砂的物理力学特性研究. 西安建筑科技大学学报(自然科学版). 2022(06): 923-929+939 . 百度学术
    24. LIU Xiao-jun,FAN Jin-yue,YU Jing,GAO Xin. Solidification of loess using microbial induced carbonate precipitation. Journal of Mountain Science. 2021(01): 265-274 . 必应学术
    25. 马国梁,何想,路桦铭,吴焕然,刘汉龙,楚剑,肖杨. 高岭土微粒固载成核微生物固化粗砂强度. 岩土工程学报. 2021(02): 290-299 . 本站查看
    26. 刘家明,童华炜,赵寄橦,袁杰. 盐溶液环境下微生物固化技术加固钙质砂的试验研究. 科学技术与工程. 2021(12): 5046-5053 . 百度学术
    27. 孙道胜,许婉钰,刘开伟,欧阳金至,王爱国. MICP在建筑领域中的应用进展. 材料导报. 2021(11): 11084-11091 . 百度学术
    28. 秦鹏飞,王为林,袁媛. 岩土工程注浆技术与其应用研究. 地质与勘探. 2021(03): 631-639 . 百度学术
    29. 肖维民,傅业姗,朱占元,吴志友. 微生物诱导碳酸钙沉积胶结岩石节理的抗剪强度特性试验研究. 岩石力学与工程学报. 2021(S1): 2750-2759 . 百度学术
    30. 刘小军,崔瀚霆,王铁行,郭宏超. 含节理黄土的微生物灌浆因素分析. 岩土工程学报. 2021(S1): 138-142 . 本站查看
    31. 邱明喜,刘汉银,明道贵,张家铭,朱纪康,周杨. 化学处理方式对微生物固沙效果的影响. 人民黄河. 2021(08): 117-121 . 百度学术
    32. 侯福星,张文,赵媛,杨晓旭,胡坪伸,李彬. 微生物诱导碳酸钙沉淀消除砂土液化的研究进展. 科学技术与工程. 2021(23): 9664-9670 . 百度学术
    33. 田威,李腾,贾能,张旭东,贺礼. 固化剂在黄土路基工程中的研究进展. 公路. 2021(11): 45-52 . 百度学术
    34. 许鹏旭,温智力,杨司盟,刘志明,冷勐,彭劼. 不同颗粒尺寸条件下MICP固化砂土的试验研究. 高校地质学报. 2021(06): 738-745 . 百度学术
    35. 程瑶佳,唐朝生,刘博,泮晓华,王殿龙,吕超,李昊. 基于石灰石粉钙源的微生物固化砂土试验研究. 高校地质学报. 2021(06): 746-753 . 百度学术
    36. 张海丽,徐品品,冷立健,姚池,温志友,刘数华,周文广. 微生物诱导碳酸钙沉积研究与应用. 生物学杂志. 2020(01): 86-91 . 百度学术
    37. 张鑫磊,陈育民,张喆,丁绚晨,徐盛明,刘汉龙,王志华. 微生物灌浆加固可液化钙质砂地基的振动台试验研究. 岩土工程学报. 2020(06): 1023-1031 . 本站查看
    38. 刘志明,彭劼,李杰,宋恩润. 超声波提高微生物固化砂土效果的试验研究. 浙江大学学报(工学版). 2020(07): 1411-1417 . 百度学术
    39. 汪艺,童华炜,邱荣康,袁杰. 微生物固化橡胶颗粒改良土的力学特性研究. 工业建筑. 2020(12): 8-14+7 . 百度学术
    40. 秦鹏飞. 不良地质体注浆技术研究述评. 金属矿山. 2019(06): 1-5 . 百度学术
    41. 李津达. 微生物加固土体技术研究进展. 江苏建筑. 2019(03): 98-101 . 百度学术
    42. 赵晓婉,冯清鹏,李杰,彭劼. 不同温度下微生物诱导碳酸钙生成量的研究. 工业建筑. 2019(11): 88-92+112 . 百度学术
    43. 梁仕华,牛九格,房采杏,戴君. 微生物固化砂土的研究进展. 工业建筑. 2018(07): 1-9+15 . 百度学术
    44. 吴雨薇,胡俊,张皖湘,汪树成,刘文博. 微生物矿化技术加固土研究现状综述. 路基工程. 2018(05): 6-11 . 百度学术

    其他类型引用(64)

计量
  • 文章访问数:  559
  • HTML全文浏览量:  27
  • PDF下载量:  348
  • 被引次数: 108
出版历程
  • 收稿日期:  2017-03-22
  • 发布日期:  2018-06-24

目录

    /

    返回文章
    返回