• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑参数空间变异性的边坡稳定可靠性有限元极限分析

陈朝晖, 雷坚, 黄景华, 程晓辉, 张志超

陈朝晖, 雷坚, 黄景华, 程晓辉, 张志超. 考虑参数空间变异性的边坡稳定可靠性有限元极限分析[J]. 岩土工程学报, 2018, 40(6): 985-993. DOI: 10.11779/CJGE201806003
引用本文: 陈朝晖, 雷坚, 黄景华, 程晓辉, 张志超. 考虑参数空间变异性的边坡稳定可靠性有限元极限分析[J]. 岩土工程学报, 2018, 40(6): 985-993. DOI: 10.11779/CJGE201806003
CHEN Zhao-hui, LEI Jian, HUANG Jing-hua, CHENG Xiao-hui, ZHANG Zhi-chao. Finite element limit analysis of slope stability considering spatial variability of soil strengths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 985-993. DOI: 10.11779/CJGE201806003
Citation: CHEN Zhao-hui, LEI Jian, HUANG Jing-hua, CHENG Xiao-hui, ZHANG Zhi-chao. Finite element limit analysis of slope stability considering spatial variability of soil strengths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 985-993. DOI: 10.11779/CJGE201806003

考虑参数空间变异性的边坡稳定可靠性有限元极限分析  English Version

基金项目: 国家自然科学基金项目(51608072)
详细信息
    作者简介:

    陈朝晖(1968- ),女,教授,博士生导师,主要从事结构系统可靠性与耐久性基础理论及应用研究。E-mail: zhaohuic@cqu.edu.cn。

Finite element limit analysis of slope stability considering spatial variability of soil strengths

  • 摘要: 当土性参数空间变异性较大时,极限平衡法得到的滑移面不尽合理。阐述了基于广义变分原理的有限元极限分析方法,采用混合有限元方法,构筑了线性应力三角形单元与线性速度三角形单元,结合强度折减法与线性规划算法,建立了边坡稳定安全系数上下限分析方法,分析了土的抗剪强度参数空间变异性对边坡稳定性的影响,并与3种典型极限平衡法进行了对比。结果表明,FELA方法可有效搜索边坡临界滑移面,并给出安全系数的严格上下限。对于简单均质边坡,有限元极限分析与极限平衡法结果接近,极限平衡法结果大多位于极限分析的上下限内;对于空间变异性较大的边坡,有限元极限分析法可以有效搜索可能的多种临界滑移面,而极限平衡法则存在显著偏差,且往往高估滑坡风险。强度参数的空间变异性还导致边坡安全系数分布形式变化显著,仅采用安全系数无法反应这一变化。根据安全系数的分布形式,给出了土性参数设计值建议。
    Abstract: The slip surface obtained by the limit equilibrium method is not reasonable when the spatial variability of soil parameters is large. The finite element limit analysis method, FELA in simple, based on the generalized variational principle is introduced. By using the mixed finite element technology, the linear stress triangular elements and linear velocity triangular elements are proposed. By use of the strength reduction method and the optimization algorithm, the strict upper bound and lower bound of the safety factor of slopes are calculated. The influences of spatial variability of soil shear strength parameters on slope stability are analyzed, and the results are compared with those of the limit equilibrium methods. The results show that compared to the limit equilibrium method, the proposed FELA can search the critical slip surfaces effectively under spatial variability of soil strengths and provide the strict upper and lower bounds of safety factors of slopes. But the limit equilibrium method will search for unreasonable slip surfaces, and often overestimate the risk of landslides. The spatial variability of soil strengths results in the significant change in the distribution of safety factors. But the single safety factor can not reflect the change. According to the distribution of safety factors, the design value of soil parameters is suggested.
  • [1] DUNCAN J M.State of the art: limit equilibrium and finite-element analysis of slopes[J]. Geotech Engng, 1996, 122(7): 577-596.
    [2] ELRAMLY H, MORGENSTERN N R, CRUDEN D M.Probabilistic slope stability analysis for practice[J]. Canadian Geotechnical Journal, 2002, 39(3): 665-683.
    [3] CHO S E.Probabilistic assessment of slope stability that considers the spatial variability of soil properties[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(7): 975-984.
    [4] GRIFFITHS D V, LANE P A.Slope stability analysis by finite elements[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1999, 49(3): 387-403.
    [5] CHEN W F, LIU X L.Limit analysis in soil mechanics[M]. Amsterdam: Elsevier Science Publishers, 1990.
    [6] 王敬林, 郑颖人, 陈瑜瑶, 等. 岩土材料极限分析上界法的讨论[J]. 岩土力学, 2003, 24(4): 538-544.
    (WANG Jing-lin, ZHENG Ying-ren, CHEN Yu-yao, et al.Discussion on upper-bound method of limit analysis for geotechenical material[J]. Rock and Soil Mechanics, 2003, 24(4): 538-544. (in Chinese))
    [7] 王均星, 王汉辉, 吴雅峰. 土坡稳定的有限元塑性极限分析上限法研究[J]. 岩石力学与工程学报, 2005, 23(10): 1867-1873.
    (WANG Jun-xing, WANG Han-hui, WU Ya-feng.Stability analysis of soil slope by finite element method with plastic limit upper bound[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 23(10): 1867-1873. (in Chinese))
    [8] 赵明华, 张锐, 雷勇. 基于可行弧内点算法的上限有限单元法优化求解[J]. 岩土工程学报, 2014, 36(4): 604-611.
    (ZHAO Ming-hua, ZHANG Rui, LEI Yong.Optimization of upper bound finite element method based on feasible arc interior point algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 604-611. (in Chinese))
    [9] LYSMER J.Limit analysis of plane problems in soil mechanics[J]. J Soil Mech Found, 1970, 96(SM4): 1311-1334.
    [10] ANDERHEGGEN E, KNOPFEL H.Finite element limit analysis using linear programming[J]. Int J Solids Struct, 1972, 8(12): 1413-1431
    [11] MAKRODIMOPOULOS A, MARTIN C M.Upper bound limit analysis using simplex strain elements and second-order cone programming[J]. Int J Numer Analyt Methods Geomech, 2007, 31(6): 835-865.
    [12] SLOAN S W.Geotechnical stability analysis[J]. Géotechnique, 2013, 63(7): 531-571.
    [13] KRABBENHOFT K, LYAMIN A V.Strength reduction finite-element limit analysis[J]. Géotechnique Letters, 2015, 5(4): 250-253.
    [14] YU S, ZHANG X, SLOAN S W.A 3D upper bound limit analysis using radial point interpolation meshless method and second‐order cone programming[J]. International Journal for Numerical Methods in Engineering, 2016, 108(13): 1686-1704.
    [15] HUANG J, LYAMIN A V, GRIFFITHS D V, et al.Quantitative risk assessment of landslide by limit analysis and random fields[J]. Computers & Geotechnics, 2013, 53(3): 60-67.
    [16] LYAMIN A V, SLOAN S W.Upper bound limit analysis using linear finite elements and non-linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 12(2): 181-216.
    [17] LI K S, LUMB P.Probabilistic design of slopes[J]. Canadian Geotechnical Journal, 1987, 24(4): 520-535.
    [18] PHOON K K, HUANG S P, QUEK S T.Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme[J]. Probabilistic Engineering Mechanics, 2002, 17(3): 293-303.
    [19] PHOON K K, KULHAWY F H.Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612-624.
    [20] 蒋水华, 李典庆, 曹子君, 等. 考虑参数空间变异性的边坡可靠度及其敏感性分析多重响应面法[J]. 防灾减灾工程学报, 2015, 35(5): 592-598.
    (JIANG Shui-hua, LI Dian-qing, CAO Zi-jun, et al.Multiple response surfaces method for probabilistic analysis and reliability sensitivity analysis of slopes considering spatially varying soil properties[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(5): 592-598. (in Chinese))
    [21] 雷坚, 陈朝晖, 黄景华. 饱和渗透系数空间变异性对边坡稳定性的影响[J]. 武汉大学学报 (工学版), 2016, 49(6): 831-837.
    (LEI Jian, CHEN Zhao-hui, HUANG Jing-hua.Effects of the spatial variability of saturated permeability on slope stability[J]. Engineering Journal of Wuhan University, 2016, 49(6): 831-837. (in Chinese))
  • 期刊类型引用(1)

    1. 姬欧鸣,胡雪飞,刘长明,晏祥智. 循环荷载饱和风积土累积塑性变形模型. 土木工程与管理学报. 2021(02): 152-159 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  383
  • HTML全文浏览量:  15
  • PDF下载量:  411
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-03-30
  • 发布日期:  2018-06-24

目录

    /

    返回文章
    返回