• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土微生物固化过程中尿素的影响研究

孙潇昊, 缪林昌, 童天志, 王呈呈

孙潇昊, 缪林昌, 童天志, 王呈呈. 砂土微生物固化过程中尿素的影响研究[J]. 岩土工程学报, 2018, 40(5): 939-944. DOI: 10.11779/CJGE201805020
引用本文: 孙潇昊, 缪林昌, 童天志, 王呈呈. 砂土微生物固化过程中尿素的影响研究[J]. 岩土工程学报, 2018, 40(5): 939-944. DOI: 10.11779/CJGE201805020
SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, WANG Cheng-cheng. Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 939-944. DOI: 10.11779/CJGE201805020
Citation: SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, WANG Cheng-cheng. Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 939-944. DOI: 10.11779/CJGE201805020

砂土微生物固化过程中尿素的影响研究  English Version

详细信息
    作者简介:

    孙潇昊(1993- ),男,博士,主要从事隧道地铁的研究工作。E-mail: sunxiao14hao@126.com。

Effect of methods of adding urea in culture media on sand solidification tests

  • 摘要: 砂土固化技术可改善砂土力学特性,被广泛应用于工程中,而在菌种培养液中添加尿素可大大加快固化反应提高砂土固化效率。开展了在菌种培养液中添加尿素分析其对砂土固化影响的试验研究。首先将尿素添加方式分为灭菌前加尿素、灭菌后加尿素和不加尿素3种,研究不同方式对菌种生长和脲酶活性的影响;再控制不同尿素添加量对比分析得到适合的尿素添加量以便后续研究;然后在砂土固化试验中采用灭菌后加尿素的方式研究其对砂土固化的影响;最后通过控制砂柱长度、胶凝液灌注速度和砂土颗粒粒径等因素,得到各因素对砂柱固化效果的影响。结果表明培养液中添加尿素可提高脲酶活性,但稍微抑制菌种生长;适合的尿素添加量为5~20 g/L;灭菌后添加尿素能显著提高灌注部位的强度,但长砂柱却因强度不均而整体强度较低;灌注速度越快,整体强度越高;添加20 g/L尿素时,整体强度随颗粒粒径增大而增大,因此,该方法适用于粗砂。研究成果对后期砂土固化技术的应用具有重要指导意义。
    Abstract: The sand solidification technology can improve the mechanical properties of sands and is being widely applied in engineering. Adding urea to culture media can drastically accelerate the curing reaction. The influence of adding urea to culture media on sand solidification is studied. At first, three methods of adding urea are examined to investigate the effects of them on the growth characteristics and urease activity: that is, adding urea before sterilization, adding urea after sterilization and not adding urea. Different amounts of urea are then added to obtain the appropriate amounts of adding urea for subsequent experiments. Finally, the method of adding urea after sterilization, length of sand columns, injection speed of gelling solution and sizes of sand particles are investigated to observe the influences of different factors on the curing of sand. The results show that the method of adding urea to the culture media can increase urease activity, but it will slightly inhibit bacterial growth. The proper amounts of urea added are between 5 and 20 g/L. The method of adding urea after sterilization markedly increases the strength of the injecting path. However, a long injecting path leads to lower overall strength. The faster the injection speed, the higher overall strength the sand columns have. When 20 g/L of urea is added, the overall strengths of the solidified sand columns increase with larger sand particle size. Therefore, the method of adding urea to the culture media for sand solidification is suitable for coarse sand, which will act as a guide for the application of sand solidification technology.
  • [1] WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004.
    [2] DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392.
    [3] DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301.
    [4] MONTOYA B M. Bio-mediated soil improvement and the effect of cementation on the behavior, improvement, and performance of sand[D]. Davis: University of California, 2012.
    [5] WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423.
    [6] DANJO T, KAWASAKI S. Formation mechanisms of beachrocks in Okinawa and Ishikawa, Japan, with a Focus on Cements[J]. Materials Transactions, 2014, 55(3): 493-500.
    [7] 李 萌, 程晓辉, 杨 钻, 等. 土壤中产脲酶细菌的分离及其在微生物砂浆制备中的应用[J]. 混凝土与水泥制品, 2013(8): 13-16. (LI Meng, CHENG Xiao-hui, YANG Zuan, et al. Isolation of urease produced strain from soil and its application in preparation of mortar[J]. China Concrete and Cement Products, 2013(8): 13-16. (in Chinese))
    [8] 荣 辉, 钱春香, 李龙志. 微生物水泥胶结机理[J]. 硅酸盐学报, 2013, 41(3): 314-319. (RONG Hui, QIAN Chun-xiang, LI Long-zhi. Cementation mechanism of microbe cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(3): 314-319. (in Chinese))
    [9] ROWSHANBAKHT K, KHAMEHCHIYAN M, SAJEDI R H, et al. Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment[J]. Ecological Engineering, 2016, 89: 49-55.
    [10] MARTINEZ B C, DEJONG J T, GINN T R, et al. Experimental optimization of microbially-induced carbonate precipitation for soil improvement[J]. Geotech Geoenviron Eng, 2013, 139(4): 587-598.
    [11] HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117.
    [12] ZHANG Y, GUO H X, CHENG X H. Role of calcium sources in the strength and microstructure of microbial mortar[J]. Construction and Building Materials, 2015, 77: 160-167.
  • 期刊类型引用(18)

    1. 江昭明,陈永贵,文子豪,付俊,周罕. pH值对MICP固化修复镉污染尾矿的影响研究. 岩土工程学报. 2025(01): 38-47 . 本站查看
    2. 陈永贵,江昭明,付俊,周罕,文子豪. 巴氏芽孢杆菌固化污染土的培养优化与矿化机制. 同济大学学报(自然科学版). 2025(04): 635-643 . 百度学术
    3. 缪林昌,王恒星,孙潇昊,吴林玉,王呈呈,范广才,尹文华,王芳. 生物矿化技术固化风积沙试验与应用. 东南大学学报(自然科学版). 2023(01): 149-155 . 百度学术
    4. 赵旭东,李伟群,尹文华,张易辰,繆林昌. 生物矿化技术在沙漠现场的大规模应用研究. 中阿科技论坛(中英文). 2022(02): 52-56 . 百度学术
    5. 肖瑶,邓华锋,李建林,程雷,朱文羲. 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究. 岩土力学. 2022(02): 395-404 . 百度学术
    6. 程雷,肖瑶,邓华锋,熊雨,彭萌,支永艳,李文华. 一株本源产脲酶细菌的分离培养及其在裂隙岩体加固中的应用. 岩土力学. 2022(S2): 307-314 . 百度学术
    7. 肖海,胡欢,吕广柳,张文琪,朱志恩,向瑞,杨悦舒,夏振尧,旺杰. 微生物诱导碳酸钙沉淀影响因素研究进展分析. 三峡大学学报(自然科学版). 2022(06): 66-75 . 百度学术
    8. 王恒星,缪林昌,孙潇昊,吴林玉. 微生物诱导固化技术研究进展. 湖南大学学报(自然科学版). 2021(01): 70-81 . 百度学术
    9. 孙潇昊,缪林昌,童天志,吴林玉,王恒星. 微生物固化砂柱效果电阻率评价研究. 岩土工程学报. 2021(03): 579-585 . 本站查看
    10. 刘士雨,俞缙,曾伟龙,彭兴黔,蔡燕燕,涂兵雄. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究. 岩石力学与工程学报. 2020(01): 191-204 . 百度学术
    11. 吴超传,郑俊杰,赖汉江,崔明娟,宋杨. 微生物固化砂土强度增长机理及影响因素试验研究. 土木与环境工程学报(中英文). 2020(01): 31-38 . 百度学术
    12. 郑俊杰,吴超传,宋杨,崔明娟. MICP胶结钙质砂的强度试验及强度离散性研究. 哈尔滨工程大学学报. 2020(02): 250-256 . 百度学术
    13. 张肖冲,靳新影,王静,陈韵,金多,马志山,刘建利,李靖宇. 不同生物土壤结皮微生物组跨膜转运蛋白基因多样性及差异. 微生物学通报. 2020(05): 1388-1403 . 百度学术
    14. 孙潇昊,缪林昌,吴林玉,王呈呈,陈润发. 低温条件微生物MICP沉淀产率试验研究. 岩土工程学报. 2019(06): 1133-1138 . 本站查看
    15. 刘士雨,俞缙,韩亮,蔡燕燕,涂兵雄,周建烽. 三合土表面微生物诱导碳酸钙沉淀耐水性试验研究. 岩石力学与工程学报. 2019(08): 1718-1728 . 百度学术
    16. 陈润发,缪林昌,孙潇昊,吴林玉,王呈呈. 微生物修复混凝土细小裂缝不同修复方法对比研究. 硅酸盐通报. 2019(10): 3054-3059 . 百度学术
    17. 朱纪康,周杨,王殿龙,张家铭. 基于微生物诱导矿化的钙质砂加固影响因素. 地质科技情报. 2019(06): 206-211 . 百度学术
    18. 孙潇昊,缪林昌,吴林玉,王呈呈,陈润发. 低温条件下微生物诱导固化对比研究. 岩土力学. 2018(S2): 224-230 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  343
  • HTML全文浏览量:  9
  • PDF下载量:  312
  • 被引次数: 34
出版历程
  • 修回日期:  2017-02-21
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回