• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

多期次应力变化对砂岩渗透率和孔隙结构影响的试验研究

秘昭旭, 王福刚, 石娜, 于景宗, 孙兆军

秘昭旭, 王福刚, 石娜, 于景宗, 孙兆军. 多期次应力变化对砂岩渗透率和孔隙结构影响的试验研究[J]. 岩土工程学报, 2018, 40(5): 864-871. DOI: 10.11779/CJGE201805011
引用本文: 秘昭旭, 王福刚, 石娜, 于景宗, 孙兆军. 多期次应力变化对砂岩渗透率和孔隙结构影响的试验研究[J]. 岩土工程学报, 2018, 40(5): 864-871. DOI: 10.11779/CJGE201805011
MI Zhao-xu, WANG Fu-gang, SHI Na, YU Jing-zong, SUN Zhao-jun. Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 864-871. DOI: 10.11779/CJGE201805011
Citation: MI Zhao-xu, WANG Fu-gang, SHI Na, YU Jing-zong, SUN Zhao-jun. Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 864-871. DOI: 10.11779/CJGE201805011

多期次应力变化对砂岩渗透率和孔隙结构影响的试验研究  English Version

详细信息
    作者简介:

    秘昭旭(1993- ),男,硕士研究生,主要研究方向为地下水渗流与地下多组分反应溶质运移。E-mail: mizx2012@qq.com。

Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone

  • Abstract: The variations of reservoir stress caused by the multi-stage and discontinuous nature of the process in the CO2 geological storage, leading to the change of permeability and pore structure of the rock, have a direct impact on CO2 injection and storage. Through laboratory experiments, variations in the permeability of sandstone in the Liujiagou formation of the Ordos CCS (CO2 capture and storage) demonstration project are analyzed under cyclic variations in injection pressure and confining pressure and multi-stage loading and unloading. In addition, the variations in the micro-pore structure are analyzed based on micro-pore structure tests. The main conclusions are as follows: (1) Both the confining pressure and the injection pressure have a significant effect on the permeability of the reservoir rock. And the influence degree can reach 30% and 80%, respectively. The relative permeability changes with pressure, and it between the loading and unloading stages is higher at low pressures than at high pressures. (2) Mathematical models of permeability as a function of confining pressure and injection pressure are constructed. The mathematical models representing different cyclical processes are quite different. (3) The effects of the interval between the experiments on permeability changes are different for different pressure modes. The rock permeability can recover better under the injection pressure variation than confining pressure variation. (4) The variations during multiple stress cycles have a significant effect on the micropore structure. The increase in micropores with mesopores at small widths and the decrease of macropores result in a decrease in the permeability of the rock samples.
  • [1] 郭建强, 文冬光, 张森琦, 等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查, 2015, 2(4): 36-46. (GUO Jian-qiang, WEN Dong-guang, ZHANG Sen-qi, et al. Potential evaluation and demonstration project of co 2 geological storage in China[J]. Geological Survey China, 2015, 2(4): 36-46. (in Chinese))
    [2] 王福刚, 孙兆军, 刘红艳, 等. 中-细粒长石石英砂岩低渗储层在围压循环增减条件下渗透率变化规律的试验研究[J]. 水利学报, 2016, 47(9): 1125-1132. (WANG Fu-gang, SUN Zhao-jun, LIU Hong-yan, et al. Experimental study on the variation of permeability of medium-fine feldspar-quartz sandstone low-permeability reservoir under the circulatory increasing or reducing conditions of confining pressure[J]. Journal of Hydraulic Engineering, 2016, 47(9): 1125-1132. (in Chinese))
    [3] 王建秀, 胡力绳, 叶 冲, 等. 复杂应力路径下大理岩三轴渗透试验研究[J]. 岩土力学, 2010, 31(8): 2389-2398. (WANG Jian-xiu, HU Li-sheng, YE Chong, et al. Triaxial permeability test of marble under complex stress path[J]. Rock and Soil Mechanics, 2010, 31(8): 2389-2398. (in Chinese))
    [4] AMANN‐Hildenbrand A, DIETRICHS J P, KROOSS B M. Effective gas permeability of Tight Gas Sandstones as a function of capillary pressure: a non-steady-state approach[J]. Geofluids, 2016, 16(3): 367-383.
    [5] FATT I, DAVIS D H. Reduction in permeability with overburden pressure[J]. Journal of Petroleum Technology, 1952, 4(12): 16-16.
    [6] 武志德, 周宏伟, 丁靖洋, 等. 不同渗透压力下盐岩的渗透率测试研究[J]. 岩石力学与工程学报, 2012, 31(增刊2): 3740-3746. (WU Zhi-de, ZHOU Hong-wei, DING Jing-yang, et al. Research on permeability testing of rock salt under different permeability pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3740-3746. (in Chinese))
    [7] VAIROGS J, HEARN C L, DAREING D W, et al. Effect of rock stress on gas production from low-permeability reservoirs[J]. Journal of Petroleum Technology, 1971, 23(9): 1161-1167.
    [8] 薛向春, 闫彦东, 耿志远, 等. 低渗砂岩储层应力敏感性研究[J]. 辽宁化工, 2015(9): 1147-1149. (XUE Xiang-chun, YAN Yan-dong, GENG Zhi-yuan, et al. Study on stress sensitivity of low permeability sandstone reservoir[J]. Liaoning Chemical Industry, 2015(9): 1147-1149. (in Chinese))
    [9] 彭苏萍, 孟召平, 王 虎, 等. 不同围压下砂岩孔渗规律试验研究[J]. 岩石力学与工程学报, 2003, 22(5): 742-746. (PENG Su-ping, MENG Zhao-ping, WANG Hu, et al. Testing study on pore ratio and permeability of sandstone under different confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 742-746. (in Chinese))
    [10] JENNINGS J B, CARROLL H B, RAIBLE C J. The relationship of permeability to confining pressure in low permeability rock[C]// SPE/DOE Low Permeability Gas Reservoirs Symposium. Society of Petroleum Engineers. Denver, 1981.
    [11] 王环玲, 徐卫亚, 左 婧, 等. 低渗透岩石渗透率与孔隙率演化规律的气渗试验研究[J]. 水利学报, 2015, 46(2): 208-216. (WANG Huan-ling, XU Wei-ya, ZUO Jing, et al. Evolution law research on the permeability and porosity of low-permeability rock based on gas permeability test[J]. Journal of Hydraulic Engineering, 2015, 46(2): 208-216. (in Chinese))
    [12] 兰 林, 康毅力, 陈一健, 等. 储层应力敏感性评价实验方法与评价指标探讨[J]. 钻井液与完井液, 2005, 22(3): 1-4. (LAN Lin, KANG Yi-li, CHEN Yi-jian, et al. Discussion on evaluation methods for stress sensitivities of low permeability and tight sandstone reservoirs[J]. Drilling Fluid & Completion Fluid, 2005, 22(3): 1-4. (in Chinese))
    [13] 孔 茜, 王环玲, 徐卫亚. 循环加卸载作用下砂岩孔隙度与渗透率演化规律试验研究[J]. 岩土工程学报, 2015, 37(10): 1893-1900. (KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. (in Chinese))
    [14] ZHANG Z, YANG Z. Theoretical and practical discussion of measurement accuracy for physisorption with micro-and mesoporous materials[J]. Chinese Journal of Catalysis, 2013, 34(10): 1797-1810.
    [15] 孟智强, 郭和坤, 刘 强, 等. 塔里木盆地致密砂岩气储层微观孔隙结构[J]. 中南大学学报: 自然科学版, 2015, 46(8): 3032-3039. (MENG Zhi-qiang, GUO He-kun, LIU Qiang, et al. Microscopic pore structure for tight sandstone gas reservoirs in Tarim Basin[J]. Journal of Central South University (Science and Technology), 2015, 46(8): 3032-3039. (in Chinese))
    [16] 杨 侃, 陆现彩, 徐金覃, 等. 气体吸附等温线法表征页岩孔隙结构的模型适用性初探[J]. 煤炭学报, 2013, 38(5): 817-821. (YANG Kan, LU Xian-cai, XU Jin-tan, et al. Preliminary verification of common calculation methods of pore size distribution of shale based on gas adsorption isotherm[J]. Journal of China Coal Society, 2013, 38(5): 817-821. (in Chinese))
    [17] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
    [18] JAGIELLO J, THOMMES M. Comparison of DFT characterization methods based on N 2 , Ar, CO 2 , and H 2 adsorption applied to carbons with various pore size distributions[J]. Carbon, 2004, 42(7): 1227-1232.
    [19] 杨 峰, 宁正福, 胡昌蓬, 等. 页岩储层微观孔隙结构特征[J]. 石油学报, 2013, 34(2): 301-311. (YANG Feng, NING Zheng-fu, HU Chang-peng, et al. Characterizatioin of microseopic pore struceures in shales reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2): 301-311. (in Chinese))
    [20] 胡科先, 王晓华. 各类储层孔隙度与渗透率关系研究[J]. 石油化工应用, 2014, 33(11): 40-42. (HU Ke-xian, WANG Xiao-hua. Experimental study of various types of reservoir porosity and permeability relationship[J]. Petrochemical Industry Application, 2014, 33(11): 40-42. (in Chinese))
  • 期刊类型引用(22)

    1. 石延杰,王健,陈青山,张浦阳,任建宇. 海上风电倾斜螺旋群桩基础适用性分析. 港口航道与近海工程. 2024(01): 44-49 . 百度学术
    2. 韦芳芳,包淑珉,邵盛,王永泉,孔纲强. 砂土中螺旋桩在斜拉荷载作用下的承载性能. 河海大学学报(自然科学版). 2024(02): 77-83 . 百度学术
    3. 杨伟华,胡雪扬,张浦阳,甘毅,陈青山. 砂土中海上倾斜螺旋群桩基础承载特性研究. 南方能源建设. 2024(02): 82-92 . 百度学术
    4. 胡伟,李砥柱,林志,冯世进,黄勇祥. 双锚片螺旋锚倾斜拉拔承载特性与承载力计算方法研究. 岩土力学. 2024(06): 1661-1674+1685 . 百度学术
    5. 李建彪,邬叶飞,马思伟,孙昌利,邵康. 土体侧移作用下螺旋钢桩被动承载机理分析. 路基工程. 2024(05): 32-38 . 百度学术
    6. 邬叶飞,高平,高丽峰,王华志,邵康. 砂土地层中多叶片螺旋钢桩压缩承载特性研究. 路基工程. 2024(05): 64-70 . 百度学术
    7. 李幸周,杨振国,黄炎,余东起. 螺旋锚单锚基础在500 kV输电线路中的应用探析. 电力勘测设计. 2024(S2): 14-21 . 百度学术
    8. 刘利民,王治伟,高明德,叶永明,阎石,张曰果. 水平单调加载下新型组合式螺旋锚复合地基基本力学性能. 地震工程与工程振动. 2023(02): 239-246 . 百度学术
    9. 胡伟,王辉,姚琛,郝冬雪,史旦达. 砂土中水平矩形锚板竖向拉拔承载全域内三维统一力学模型与承载力计算方法研究. 岩土力学. 2023(06): 1811-1825 . 百度学术
    10. 周为华,高明德,叶永明,杨立. 砂土地基增强套管螺旋锚组合基础试验研究. 建筑结构. 2023(S1): 2578-2582 . 百度学术
    11. 高明德,庾思黎,叶永明,周为华. 大小螺旋锚组合型基础现场试验研究. 工业建筑. 2023(S1): 539-542 . 百度学术
    12. 周震. 锚桩竖向荷载抗拔模型试验研究. 土工基础. 2022(01): 102-105 . 百度学术
    13. 黄勇祥,丁士君,袁小超,翟国光,丁民涛. 青藏高原碎石土地基混凝土承台式螺旋锚基础原位载荷试验及承载机制分析. 建筑结构. 2022(04): 148-152+105 . 百度学术
    14. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 . 百度学术
    15. 胡伟,杨瑶,刘顺凯,林志,吴秋红,黄勇祥. 光伏支架螺旋桩斜向拉拔承载特性试验研究. 太阳能学报. 2022(12): 50-61 . 百度学术
    16. 马建军,王满,刘家宇,聂梦强,王连华. 基于Winkler地基理论的横向受荷长桩非线性动力响应模型试验. 振动与冲击. 2021(01): 39-44+67 . 百度学术
    17. 韦芳芳,华子伟,邵盛,于玮伟,朱俞. 砂土中倾斜螺旋桩水平承载性能有限元分析. 河北工程大学学报(自然科学版). 2021(01): 13-19 . 百度学术
    18. 韦芳芳,邵盛,陈道申,徐庆鹏,邹本为,孔纲强. 黏土中倾斜螺旋桩的水平承载性能数值模拟及理论研究. 东南大学学报(自然科学版). 2021(03): 463-472 . 百度学术
    19. 刘志鹏,孔纲强,文磊,王志华,秦红玉. 砂土地基中倾斜螺旋桩群桩上拔与水平承载特性模型试验. 岩土力学. 2021(07): 1944-1950 . 百度学术
    20. 崔建国,田野,刘君巍,侯绪研,崔江磊,杨飞,王晶,关祥毅. 月壤临界尺度颗粒运移特性对钻采阻力影响研究. 岩土工程学报. 2021(09): 1715-1723 . 本站查看
    21. 林志,胡伟,赵璞,陈秋南,贺建清,陈洁,史旦达. 砂土中平板圆锚倾斜拉拔承载特性模型试验研究. 岩土力学. 2021(11): 3059-3068+3168 . 百度学术
    22. 吴立晴,邵国栋,盛寒柯,王文明. 螺旋锚在软黏土中上拔承载力计算与数值模拟分析. 低温建筑技术. 2021(10): 120-124 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 37
出版历程
  • 修回日期:  2017-03-15
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回