• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑主应力轴方向的砂土各向异性强度准则与滑动面研究

董彤, 郑颖人, 孔亮, 柘美

董彤, 郑颖人, 孔亮, 柘美. 考虑主应力轴方向的砂土各向异性强度准则与滑动面研究[J]. 岩土工程学报, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018
引用本文: 董彤, 郑颖人, 孔亮, 柘美. 考虑主应力轴方向的砂土各向异性强度准则与滑动面研究[J]. 岩土工程学报, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018
DONG Tong, ZHENG Ying-ren, KONG Liang, ZHE Mei. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018
Citation: DONG Tong, ZHENG Ying-ren, KONG Liang, ZHE Mei. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018

考虑主应力轴方向的砂土各向异性强度准则与滑动面研究  English Version

基金项目: 国家自然科学基金项目(11572165)
详细信息
    作者简介:

    董彤(1990- ),男,山东新泰人,博士研究生,主要从事岩土本构关系方面的研究。E-mail: dt0706@126.com。

  • 中图分类号: TU431

Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress

  • 摘要: 主应力加载方向对土体强度产生影响的根本原因是土体存在各向异性。对于横观各向同性砂土而言,沿不同平面的抗剪强度随该平面与沉积面夹角增大而增大。认为砂土固有各向异性强度与该平面的各向异性参数密切相关,给出了各向异性砂的峰值强度表达式。在SMP准则中,各个潜在滑动面上的剪正应力比相同,各向异性砂土的抗剪强度和滑动面位置由强度最低的潜在滑动面所决定。综合考虑主应力轴、滑动面以及沉积面之间的位置关系,得到了砂土的各向异性强度准则。采用福建标准砂进行了一系列定轴剪切试验,系统地观测了定轴剪切试验中试样滑动面的特征。已有试验数据和理论结果的对比表明,各向异性强度准则可以较好地预测各向异性砂土的强度与滑动面位置。
    Abstract: The effect of directions of the principal stress on the deformation and strength of sand is due to the anisotropy of soils. The shear strength on a certain plane of the cross-isotropic sand is larger when the angle between this plane and the bedding plane is larger. Assuming that the intrinsic anisotropy strength of sand is closely related to the anisotropy parameter of the plane, the peak strength of anisotropic soils is presented. As the shear-normal stress ratio of each potential slipping plane of the SMP criterion is the same, the shear strength and position of the slipping plane are determined by the potential slipping plane with the lowest shear strength. On this basis, an anisotropic strength criterion is proposed by considering the relationship among the principal stress axis, the slipping plane and the bedding plane. A series of shear tests with fixed direction of the major principal stress are carried out using Fujian standard sand in order to systematically observe the slipping plane of the specimens. Comparison between the predicted data and the measured results indicates that the anisotropic model can well reflect the strength and the position of the slipping plane of the anisotropic soils.
  • [1] 董彤, 郑颖人, 刘元雪, 等. 考虑主应力轴旋转的土体本构关系研究进展[J]. 应用数学和力学, 2013, 34(4): 327-335.
    (DONG Tong, ZHENG Ying-ren, LIU Yuan-xue, et al.Research progress of the soil constitutive relation considering principal stress axes rotation[J]. Applied Mathematics and Mechanics, 2013, 34(4): 327-335. (in Chinese))
    [2] ARTHUR J R F, MENZIES B K. Inherent anisotropy in sand[J]. Géotechnique, 1972, 22(1): 115-128.
    [3] TONG Z, FU P, ZHOU S, et al.Experimental investigation of shear strength of sands with inherent fabric anisotropy[J]. Acta Geotechnica, 2014, 9(2): 257-275.
    [4] 蔡燕燕, 俞缙, 余海岁, 等. 加载路径对粗粒土非共轴性影响的试验研究[J]. 岩土工程学报, 2012, 34(6): 1117-1122.
    (CAI Yan-yan, YU Jin, YU Hai-sui, et al.Experimental study on effect of loading path on non-coaxiality of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1117-1122. (in Chinese))
    [5] CAI Y, YU H S, WANATOWSKI D, et al.Non-coaxial behaviour of sand under various stress paths[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(8): 1381-1395.
    [6] 黄茂松. 土体稳定与承载特性的分析方法[J]. 岩土工程学报, 2016, 38(1): 1-34.
    (HUANG Mao-song.Analysis methods for stability and bearing capacity of soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 1-34. (in Chinese))
    [7] 沈扬, 周建, 张金良, 等. 考虑主应力方向变化的原状黏土强度及超静孔压特性研究[J]. 岩土工程学报, 2007, 29(6): 843-847.
    (SHEN Yang, ZHOU Jian, ZHANG Jin-liang, et al.Research on strength and pore pressure of intact clay considering variation of principal stress direction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 843-847. (in Chinese))
    [8] LADE P V, DYCK E V, RODRIGUEZ N M.Shear banding in torsion shear tests on cross-anisotropic deposits of fine Nevada sand[J]. Soils and Foundations, 2014, 54(6): 1081-1093.
    [9] 童朝霞. 应力主轴循环旋转条件下砂土的变形规律与本构模型研究[D]. 北京: 清华大学, 2008.
    (TONG Zhao-xia.Research on deformation behavior and constitutive model of sands under cyclic rotation of principal stress axes[D]. Beijing: Tsinghua University, 2008. (in Chinese))
    [10] MIURA K, MIURA S, TOKI S.Deformation behavior of anisotropic dense sand under principal stress rotation[J]. Soils and Foundations, 1986, 26(1): 36-52.
    [11] MATSUOKA H, JUN-ICHI H, KIYOSHI H.Deformation and failure of anisotropic sand deposits[J]. Soil Mechanics and Foundation Engineering, 1974, 32(11): 31-36. (in Japanese))
    [12] 张连卫, 张建民, 张嘎. 基于SMP的粒状材料各向异性强度准则[J]. 岩土工程学报, 2008, 30(8): 1107-1111.
    (ZHANG Lian-wei, ZHANG Jian-min, ZHANG Ga.SMP- based anisotropic strength criteria of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1107-1111. (in Chinese))
    [13] 姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究[J]. 水利学报, 2012, 42(1): 43-50.
    (YAO Yang-ping, KONG Yu-xia.Study on strength and failure criterion of cross-anisotropic soil[J]. Journal of Hydraulic Engineering, 2012, 42(1): 43-50. (in Chinese))
    [14] 罗汀, 李萌, 孔玉侠, 等. 基于SMP的岩土各向异性强度准则[J]. 岩土力学, 2009, 30(增刊2): 127-131.
    (LUO Ting, LI Meng, KONG Yu-xia, et al.Failure criterion based on SMP for anisotropic geomaterials[J]. Rock and Soil Mechanics, 2009, 30(S2): 127-131. (in Chinese))
    [15] MATSUOKA H.Stress-strain relationships of sands based on the mobilized plane[J]. Soils & Foundations, 1974, 14: 47-61.
    [16] LI X S, DAFALIAS Y F.Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2002, 128(10): 868-880.
    [17] GAO Z, ZHAO J, YAO Y.A generalized anisotropic failure criterion for geomaterials[J]. International Journal of Solids & Structures, 2010, 47(22/23): 3166-3185.
    [18] 曹威, 王睿, 张建民. 横观各向同性砂土的强度准则[J]. 岩土工程学报, 2016, 38(11): 2026-2032.
    (CAO Wei, WANg Rui, ZHANG Jian-min.New strength criterion for sand with cross-anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2026-2032. (in Chinese)).
    [19] DONG T, ZHE M.Controlling and realizing of generalized stress paths in HCA test[J]. Electronic Journal of Geotechnical Engineering, 2016(21): 5269-5283
  • 期刊类型引用(13)

    1. 满轲,柳宗旭,商艳,宋志飞,刘晓丽,苏宝. 基于灰色关联分析下深度学习盾构姿态预测模型. 工程科学与技术. 2025(02): 203-213 . 百度学术
    2. 满轲,曹子祥,刘晓丽,宋志飞,柳宗旭,刘汭琳,武立文. 地质突变条件下基于组合模型的围岩等级和TBM掘进参数预测. 河海大学学报(自然科学版). 2024(01): 55-62 . 百度学术
    3. 邓志兴,谢康,李泰灃,苏谦,韩征,肖宪普. 基于机器学习的高铁边坡位移预测不确定性度量与应用. 中国铁道科学. 2024(01): 56-67 . 百度学术
    4. 姜浩,郑亚强,金治军,马庆,董强,郑德焰,林峰,赵炳武. 基于ANN算法的钢结构安装工程质量状态评价. 化工管理. 2024(06): 102-109 . 百度学术
    5. 郝晶晶,段鹏鑫,陈雨欣,段晓晨. 基于IGWO-SVR的地铁车站投资预测. 铁道学报. 2024(05): 179-188 . 百度学术
    6. 张洁. 新疆超长隧洞TBM智能掘进施工方法研究. 黑龙江水利科技. 2024(08): 123-125 . 百度学术
    7. 林平,李有鹏,谭彬. 基于Bootstrap方法和LSSVM模型的滑坡位移区间预测. 测绘与空间地理信息. 2024(09): 48-51+56 . 百度学术
    8. 张琦,甘超,曹卫华. 大洋钻探过程钻速在线区间预测方法——以微型钻探船室内模拟实验为例. 钻探工程. 2024(05): 45-52 . 百度学术
    9. 赵高峰,姜宝元,芮福鑫,马洪素,李洁勇,赵晓豹,龚秋明. 基于数值仿真的复杂岩体TBM掘进性能评估模型. 中南大学学报(自然科学版). 2023(03): 984-997 . 百度学术
    10. 常建涛,乔子萱,孔宪光,杨胜康,罗才文. 多维非线性特征重构与融合的复杂产品工期预测方法. 机械工程学报. 2023(06): 294-308 . 百度学术
    11. 禹海涛,朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析. 隧道与地下工程灾害防治. 2023(03): 19-26 . 百度学术
    12. 彭继慎,郝茗,宋立业,李希桐. 基于TSSA-SVR算法的TBM掘进速度预测. 辽宁工程技术大学学报(自然科学版). 2023(05): 634-640 . 百度学术
    13. 闫静,张雪英,李凤莲,陈桂军,黄丽霞. 结合栈式监督AE与可变加权ELM的回归预测模型. 计算机工程. 2022(08): 62-69+76 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  322
  • HTML全文浏览量:  3
  • PDF下载量:  260
  • 被引次数: 24
出版历程
  • 收稿日期:  2016-12-23
  • 发布日期:  2018-04-24

目录

    /

    返回文章
    返回