• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

苏州第四纪深厚地层剪切波速空间变化特征及其应用

朱姣, 陈国兴, 许汉刚, 刘薛宁

朱姣, 陈国兴, 许汉刚, 刘薛宁. 苏州第四纪深厚地层剪切波速空间变化特征及其应用[J]. 岩土工程学报, 2018, 40(4): 726-735. DOI: 10.11779/CJGE201804017
引用本文: 朱姣, 陈国兴, 许汉刚, 刘薛宁. 苏州第四纪深厚地层剪切波速空间变化特征及其应用[J]. 岩土工程学报, 2018, 40(4): 726-735. DOI: 10.11779/CJGE201804017
ZHU Jiao, CHEN Guo-xing, XU Han-gang, LIU Xue-ning. Spatial variation characteristics of shear wave velocity structure and its application to quaternary deep sediment layers in Suzhou region[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 726-735. DOI: 10.11779/CJGE201804017
Citation: ZHU Jiao, CHEN Guo-xing, XU Han-gang, LIU Xue-ning. Spatial variation characteristics of shear wave velocity structure and its application to quaternary deep sediment layers in Suzhou region[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 726-735. DOI: 10.11779/CJGE201804017

苏州第四纪深厚地层剪切波速空间变化特征及其应用  English Version

基金项目: 国家自然科学基金项目(51378258,51438004)
详细信息
    作者简介:

    朱姣(1990- ),女,博士研究生,主要从事场地地震效应研究的工作。E-mail: zhujiao90@163.com。

    通讯作者:

    陈国兴,E-mail:gxchen@njtech.edu.cn

  • 中图分类号: TU431

Spatial variation characteristics of shear wave velocity structure and its application to quaternary deep sediment layers in Suzhou region

  • 摘要: 土体剪切波速是工程场地地震效应评价的重要参数之一。基于苏州城区的大量剪切波速实测资料和工程地质特征,探讨了第四纪深厚沉积层剪切波速结构空间变化特征,给出了不同工程地质分区的土层剪切波速随深度变化的经验公式;基于不同深度范围内土层平均剪切波速间存在的显著相关性,建立了基于浅层剪切波速外推深层剪切波速的逐步外推法,验证结果表明:①苏州城区等效剪切波速νs20νs30的空间展布具有显著的分区特征,覆盖层厚度d>80 m的Ⅲ类和Ⅳ类场地的等效剪切波速分界值νs30可以取为170 m/s;②平原区土层剪切波速随深度的变化呈幂律函数关系;丘陵区细化为3个小的区域后,各分区内土层剪切波速随深度的变化呈二次多项式关系;③逐步外推法具有很好的适用性,但当外推深度处的土层剪切波速存在剧烈变化时,剪切波速的逐步外推法失效;④基于剪切波速逐步外推法,可给出剪切波速不小于500 m/s和700 m/s的任意假想基岩面埋深Hrock及相应的微震动场地卓越周期Tg,发现Tg值和Hrock值的空间展布基本一致;选取剪切波速不小于700 m/s的土层顶面为地震基岩面时,各工程地质分区的Tg值和Hrock值空间展布的差异性显著增大。
    Abstract: The shear wave velocity of soils is one of the most important parameters to evaluate the seismic effects of engineering sites. Based on large numbers of borehole shear wave velocity measurements and the engineering geological characteristics in Suzhou region, the spatial variation characteristics of shear wave velocity structure for the quaternary deep sediment layers are analyzed, and the empirical equations of shear wave velocities with depth in different engineering geological zones are given respectively. Moreover, based on the significant correlation between the average shear wave velocities to different depths, the gradual extrapolation method for estimating the values of deep shear wave velocity from a shallow shear wave velocity profile is established. The validated results show that: (1) The spatial variations of equivalent shear wave velocities for νs20 and νs30 in Suzhou City exhibit obvious regional dependency. It will be more appropriate to use νs30=170 m/s as the threshold value for the site class Ⅲ and Ⅳ with overburden thickness d>80 m. (2) The variations of shear wave velocities with depth in the western and eastern plain zones can be fitted by power-law functions. After subdividing hill zones, the variations of shear wave velocities with depth in the three subdivided hill zones can be fitted by quadratic polynomial functions. (3) The gradual extrapolation method has a good applicability for deep shear wave velocity, but when the shear wave velocities of soils under extrapolation initial depth have dramatic changes, the extrapolation method is inapplicable. (4) The depths (Hrock) of seismic bedrock surfaces with shear velocity not less than 500 m/s or 700 m/s and the corresponding predominant periods (Tg) under microseism can be obtained by the gradual extrapolation method. It is found that the spatial variations for both Tg and Hrock are similar. By choosing the interface of soils with shear velocity not less than 700 m/s as the seismic bedrock surface, the differences of Tg and Hrock among different engineering geological zones significantly increase.
  • [1] 孔梦云, 陈国兴, 李小军, 等. 以剪切波速与地表峰值加速度为依据的地震液化确定性及概率判别法[J]. 岩土力学, 2015, 36(5): 1239-1252.
    (KONG Meng-yun, CHEN Guo-xing, LI Xiao-jun, et al.Shear wave velocity and peak ground acceleration based deterministic and probabilistic assessment of seismic soil liquefaction potential[J]. Rock and Soil Mechanics, 2015, 36(5): 1239-1252. (in Chinese))
    [2] SUN C G.Determination of mean shear wave velocity to 30m depth for site classification using shallow depth shear wave velocity profile in Korea[J]. Soil Dynamics and Earthquake Engineering, 2015, 73: 17-28.
    [3] GÉLIS C, BONILLA L F. Influence of a sedimentary basin infilling description on the 2D P-SV wave propagation using linear and nonlinear constitutive models[J]. Geophysical Journal International, 2014, 198(3): 1684-1700.
    [4] BOORE D M. Estimating Vs(30) (or NEHRP site classes) from shallow velocity models (depths<30 m)[J]. Bulletin of the Seismological Society of America, 2004, 94(2): 591-597.
    [5] BOORE D M, THOMPSON E M, CADET H.Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 meters[J]. Bulletin of the Seismological Society of America, 2011, 101(6): 3046-3059.
    [6] CADET H, DUVAL A M.A shear wave velocity study based on the KiK-net borehole data: a short note[J]. Seismological Research Letters, 2009, 80(3): 440-445.
    [7] STEWART J P, KLIMIS N, SAVVAIDIS A, et al.Compilation of a local VS profile database and its application for inference of VS30 from geologic and terrain-based proxies[J]. Bulletin of the Seismological Society of America, 2014, 104(6): 2827-2841.
    [8] ANDERSON J G, LEE Y, ZENG Y, et al.Control of strong motion by the upper 30 meters[J]. Bulletin of the Seismological Society of America, 1996, 86(6):1749-1759.
    [9] 刘红帅, 郑桐, 齐文浩, 等. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报, 2010, 32(7): 1142-1149.
    (LIU Hong-shuai, ZHENG Tong, QI Wen-hao, et al.Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1142-1149. (in Chinese))
    [10] HASANCEBI N, ULUSAY R.Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments[J]. Bulletin of Engineering Geology and the Environment, 2007, 66(2): 203-213.
    [11] KUO C H, WEN K L, HSIEH H H, et al.Evaluating empirical regression equations for Vs and estimating Vs30 in northeastern Taiwan[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(3): 431-439.
    [12] Council Building Seismic Safety. FEMA P-750 NEHRP Recommended provisions for seismic regulations for new building and other structures[S]. Washington D C: Federal Emergency Management Agency, 2009.
    [13] KANLI A I, TILDY P, PRÓNAY Z, et al. Vs30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey[J]. Geophysical Journal International, 2006, 165(1): 223-235.
    [14] WANG S Y, WANG H Y.Site-dependent shear-wave velocity equations versus depth in California and Japan[J]. Soil Dynamics and Earthquake Engineering, 2016, 88: 8-14.
    [15] 朱姣, 陈国兴, 许汉刚. 地震基岩面的选取对深厚场地地表地震动参数的影响[J]. 岩土工程学报, 2015, 37(11): 2079-2087.
    (ZHU Jiao, CHEN Guo-xing, XU Han-gang.Effect of seismic bedrock interface depth on surface motion parameters of deep site[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2079-2087. (in Chinese))
计量
  • 文章访问数:  328
  • HTML全文浏览量:  0
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-29
  • 发布日期:  2018-04-24

目录

    /

    返回文章
    返回