• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

盾构双隧道不同开挖顺序及不同布置形式对管线的影响研究

马少坤, 刘莹, 邵羽, 段智博, 吕海波

马少坤, 刘莹, 邵羽, 段智博, 吕海波. 盾构双隧道不同开挖顺序及不同布置形式对管线的影响研究[J]. 岩土工程学报, 2018, 40(4): 689-697. DOI: 10.11779/CJGE201804013
引用本文: 马少坤, 刘莹, 邵羽, 段智博, 吕海波. 盾构双隧道不同开挖顺序及不同布置形式对管线的影响研究[J]. 岩土工程学报, 2018, 40(4): 689-697. DOI: 10.11779/CJGE201804013
MA Shao-kun, LIU Ying, SHAO Yu, DUAN Zhi-bo, LÜ Hai-bo. Effects of twin shield tunneling with different construction sequences and different relative locations on adjacent pipelines[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 689-697. DOI: 10.11779/CJGE201804013
Citation: MA Shao-kun, LIU Ying, SHAO Yu, DUAN Zhi-bo, LÜ Hai-bo. Effects of twin shield tunneling with different construction sequences and different relative locations on adjacent pipelines[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 689-697. DOI: 10.11779/CJGE201804013

盾构双隧道不同开挖顺序及不同布置形式对管线的影响研究  English Version

基金项目: 国家自然科学基金项目(41362016, 51678166, 51508113); 广西岩土力学与工程重点实验室资助课题项目(16-KF-01); 广西自然科学基金创新研究团队项目(2016GXNSFGA380008)
详细信息
    作者简介:

    邵羽(1987- ),男,博士研究生,主要从事地下工程方面的研究工作。E-mail: gxugeo@126.com。

  • 中图分类号: U451

Effects of twin shield tunneling with different construction sequences and different relative locations on adjacent pipelines

  • 摘要: 在离心模型试验中同时考虑隧道开挖所致地层损失效应和质量损失效应,研究不同开挖顺序及不同布置形式下双隧道开挖对管线的影响规律。同时采用基于地层损失比的位移控制有限单元法对离心模型试验及其他4组拓展工况进行分析,其中土体本构模型采用考虑土体小应变特性的HP(Hypoplasticity model)模型,并将试验结果与已有的解析方法进行对比。研究结果表明,双隧道不同开挖顺序及不同布置形式对地表沉降、管线沉降、管线弯曲应变的影响显著;管线存在所产生的“遮拦”效应对管线正上方地表沉降的影响程度随着自由场最大地表沉降的增加而逐渐加剧;双隧道开挖所致管线沉降的主要影响区域为-1.2DT~1.2DT;实际工程中应加强浅埋后继隧道开挖时管线工作性状的监测工作,且不应简单采用叠加原理对不同施工工序及不同布置形式的双隧道开挖所致地表沉降、管线沉降及管线弯曲应变进行预测,应合理考虑后继隧道开挖所致土体的累计剪切应变及上覆隧道的遮拦效应对管-土相对刚度的影响。
    Abstract: A series of three-dimensional centrifuge model tests are carried out to investigate the effects of twin shield tunneling with different construction sequences and different relative locations on an existing buried pipeline in dry sand. Both the volume loss effect and the weight loss effect are simulated by using an improved tunnel model. Meanwhile, a displacement controlled method based on ground loss and an advanced hypoplasticity constitutive model are applied for the three-dimensional numerical back-analyses of the centrifuge tests and the other four extended conditions. It is shown that the twin tunnels with different construction sequences and different relative locations greatly affect the surface settlements, pipeline settlements and pipeline bending strains. The influences of the shield effect induced by the existence of the pipeline on the ground surface settlement become more obvious with the increasing greenfield ground surface settlement. The major influence zone on the pipeline induced by tunneling is within ±1.2DT. For practical engineering, it is necessary to enhance the monitoring of the serviceability of pipelines during the second tunneling with shallow depth. Remarkably, it should not simply adopt the superposition principle to predict the greenfield surface settlements, pipeline settlements and pipeline bending strains due to twin tunnelling with different construction sequences and different relative locations. The effects of the accumulated shear strain and the shield effect due to the existence of the upper tunnel on the relative pipe-soil stiffness should be reasonably considered.
  • [1] ATTEWELL P, YEATES J, SELBY A.Soil movements induced by tunnelling and their effects on pipelines and structures[M]. London: Blackie, 1986.
    [2] KLAR A, VORSTER T E, SOGA K, et al.Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 2005, 55(6): 461-466.
    [3] VORSTER T E, KLAR A, SOGA K, et al.Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1399-1410.
    [4] KLAR A, MARSHALL A M.Linear elastic tunnel pipeline interaction: the existence and consequence of volume loss equality[J]. Géotechnique, 2015, 65(9): 788-792.
    [5] MARSHALL A M, KLAR A, MAIR R J.Tunneling beneath buried pipes: view of soil strain and its effect on pipeline behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1664-1672.
    [6] 赵智涛, 刘军, 王霆, 等. 地铁暗挖施工引起的管线与地层沉降关系研究[J]. 岩土力学, 2015, 36(4): 1159-1166.
    (ZHAO Zhi-tao, LIU Jun, WANG Ting, et al.Relationship between the surface subsidence and the pipeline displacement induced by metro tunnel construction[J]. Rock and Soil Mechanics, 2015, 36(4): 1159-1166. (in Chinese))
    [7] 周敏, 杜延军, 王非, 等. 地层沉陷中埋地HDPE管道力学状态及模型试验分析[J]. 岩土工程学报, 2016, 38(2): 253-262.
    (ZHOU Min, DU Yan-jun, WANG Fei, et al.Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 253-262. (in Chinese))
    [8] SHI Jiang-wei, WANG Yu, NG W W Charles. Three-dimensional centrifuge modeling of ground and pipeline response to tunnel excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(11): 04016054.
    [9] JACOBSZ S W, STANDING J R, MAIR R J, et al.Centrifuge modelling of tunnelling near driven piles[J]. Soils and Foundations, 2004, 44(1): 49-56.
    [10] JÁKY J. The coefficient of earth pressure at rest[J].Journal of the Society of Hungarian Architects and Engineers, 1994, 78(22): 355-358.
    [11] GARNIER J.Physical models in geotechnics: state of the art and recent advances[C]// First Coulomb lecture, Caquot Conference. Paris, 2001: 1-51.
    [12] FUGLSANG L D, OVESEN N K.The theory of modelling to centrifuge studies[M]// Centrifuge in Soil Mechanics. CRAIG W H, JAMES R G, SCHOFIELD A N, ed. 1988.
    [13] YAMASHITA S, JAMIOLKOWSKI M, PRESTI D C F L. Stiffness nonlinearity of three sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(10): 929-938.
    [14] ISHIHARA K.Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-415.
    [15] BOLTON M D.The strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78.
    [16] VON WOLFFERSDORFF P A. A hypoplastic relation for granular materials with a predefined limit state surface[J]. Mechanics of Cohesive-frictional Materials, 1996, 1(3): 251-271.
    [17] GUDEHUS G, MAŠÍN D. Graphical representation of constitutive equations[J]. Géotechnique, 2009, 59(2): 147-151.
    [18] NIEMUNIS A, HERLE I.Hypoplastic model for cohesionless soils with elastic strain range[J]. Mechanics of Cohesive-frictional Materials, 1997, 2(4): 279-299.
    [19] HERLE I, GUDEHUS G.Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies[J]. Mechanics of Cohesive-frictional Materials, 1999, 4(5): 461-486.
    [20] YAMASHITA S, KAWAGUCHI T, NAKATA Y, et al.Interpretation of international parallel test on the measurement of Gmax using bender elements[J]. Soils and Foundations, 2009, 49(4): 631-650.
    [21] PENG S.Influence of stress relief due to deep excavation on capacity of pile foundations[D]. Hong Kong: Hong Kong University of Science and Technology, 2012.
    [22] DO N A, DIAS D, ORESTE P.Three-dimensional numerical simulation of mechanized twin stacked tunnels in soft ground[J]. Journal of Zhejiang University Science A, 2014, 15(11): 896-913.
    [23] KLAR A, ELKAYAM I, MARSHALL A M.Design oriented linear-equivalent approach for evaluating the effect of tunneling on pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 142(1): 4015062.
    [24] MAIR R J, TAYLOR R N, BRACEGIRDLE A.Subsurface settlement profiles above tunnels in clays[J]. Géotechnique, 1993, 43(2): 315-320.
  • 期刊类型引用(7)

    1. 王识,聂文峰,孙希望,李能. 双层土质边坡稳定性评价的解析上限法. 科技通报. 2023(01): 67-73 . 百度学术
    2. 王亚辉. 深厚冲积地层护滩堤原型观测技术. 汕头大学学报(自然科学版). 2023(01): 13-22 . 百度学术
    3. 张博. 软弱路基段路堤填筑速率的控制措施分析. 交通世界. 2023(36): 106-108 . 百度学术
    4. 朱学亮,邵生俊,沈晓钧,邵帅,刘小康. 裂隙黄土边坡三维稳定性极限分析. 岩土力学. 2022(10): 2735-2743+2756 . 百度学术
    5. 王迪,王宏权,王晓飞,徐惠民,张飞. 基于极限分析上限法双层土坡稳定性分析. 水利与建筑工程学报. 2020(04): 209-214 . 百度学术
    6. 贾恺,杨光华,汤连生,李泽源. 软土地基堤围稳定性计算方法. 工程科学学报. 2019(05): 573-581 . 百度学术
    7. 张惠敏,雷国辉,刘芳雪,张飞. 均质软土地基上土堤稳定性的极限分析方法. 岩土工程学报. 2019(S2): 21-24 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  293
  • HTML全文浏览量:  3
  • PDF下载量:  328
  • 被引次数: 11
出版历程
  • 收稿日期:  2017-01-17
  • 发布日期:  2018-04-24

目录

    /

    返回文章
    返回