• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土体非共轴各向异性对城市浅埋土质隧道诱发地表沉降的影响

袁冉, 杨文波, 余海岁, 周波

袁冉, 杨文波, 余海岁, 周波. 土体非共轴各向异性对城市浅埋土质隧道诱发地表沉降的影响[J]. 岩土工程学报, 2018, 40(4): 673-680. DOI: 10.11779/CJGE201804011
引用本文: 袁冉, 杨文波, 余海岁, 周波. 土体非共轴各向异性对城市浅埋土质隧道诱发地表沉降的影响[J]. 岩土工程学报, 2018, 40(4): 673-680. DOI: 10.11779/CJGE201804011
YUAN Ran, YANG Wen-bo, YU Hai-Sui, ZHOU Bo. Effects of non-coaxiality and soil anisotropy on tunneling-induced subsurface settlements[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 673-680. DOI: 10.11779/CJGE201804011
Citation: YUAN Ran, YANG Wen-bo, YU Hai-Sui, ZHOU Bo. Effects of non-coaxiality and soil anisotropy on tunneling-induced subsurface settlements[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 673-680. DOI: 10.11779/CJGE201804011

土体非共轴各向异性对城市浅埋土质隧道诱发地表沉降的影响  English Version

基金项目: 国家自然科学基金项目(51609204,51408494,51678499); 中央高校基本科研业务费专项资金项目(2682016CX002,2682015 CX092)
详细信息
    作者简介:

    袁 冉(1987- ),女,讲师,主要从事土体本构建模、数值模拟以及岩土工程应用方面的研究。E-mail: yuanran@home.swjtu.edu.cn。

    通讯作者:

    杨文波,E-mail:yangwenbo1179@hotmail.com

  • 中图分类号: TU43

Effects of non-coaxiality and soil anisotropy on tunneling-induced subsurface settlements

  • 摘要: 当前用于隧道工程数值模拟的本构模型,大多局限于土体各向同性框架下的共轴假设,难以充分反映隧道周围土体力学响应的复杂性。针对典型砂土和软黏土,建立考虑初始强度各向异性和非共轴特性的二维平面应变、理想弹塑性的土体本构模型,并编制用户材料子程序(UMAT),嵌入非线性有限元软件ABAQUS中,对城市浅埋土质隧道开挖施工进行二维数值模拟分析。结果表明:开挖面附近土体应力主轴可能发生明显旋转;同等地层损失率下,考虑土体初始强度各向异性预测的地表归一化沉降槽的形状与离心机试验结果更加吻合;同一程度荷载衰减下,考虑非共轴各向异性影响后沿中轴线的最大地表竖向位移明显偏大。因此可以认为,如忽略土体的非共轴和各向异性特性,可能会导致相关的设计方案偏于不安全。
    Abstract: Nowadays, constitutive models for soils used for numerical modelling of tunnelling are normally restricted to the assumption of soil strength isotropy and coaxiality. A plane strain, elastic-perfectly plastic non-coaxial soil model with an anisotropic yield criterion is proposed. The non-coaxial soil model developed is then implemented into the commercial finite element software ABAQUS via the user-defined material subroutine (UMAT). Numerical simulations are performed on two-dimensional city shallow earth tunnel excavations using the newly proposed non-coaxial soil model. A case study is performed to compare the numerical results with the centrifuge test ones. The results show that the representative soil elements around tunnel experience severe principal stress orientations. The prediction of normalized subsurface settlement trough can be improved by considering the initial soil strength anisotropy. A larger value of the non-coaxial coefficient results in a larger magnitude of the maximum vertical displacement. It is concluded that no consideration of soil anisotropy and non-coaxiality may result in unsafe design in tunnelling.
  • [1] ARTHUR J R F, CHUA K S, DUNSTAN T. Induced anisotropy in a sand[J]. Géotechnique, 1977, 27(1): 13-30.
    [2] ODA M, KONISHI J.Rotation of principal stresses in granular material during simple shear[J]. Soils and Foundations, 1974, 14(4): 39-53.
    [3] 童朝霞, 张建民, 于艺林. 中主应力系数对应力主轴循环旋转条件下砂土变形特性的影响[J]. 岩土工程学报, 2009, 31(6): 946-952.
    (TONG Zhao-xia, ZHANG Jian-min, YU Yi-lin.Effects of intermediate principal stress parameter on deformation behavior of sands under cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 946-952. (in Chinese))
    [4] YANG L T.Experimental study of soil anisotropy using hollow cylinder testing[D]. Nottingham: University of Nottingham, 2013.
    [5] 黄茂松, 孙海忠, 钱建固. 粗粒土的非共轴性及其离散元数值模拟[J]. 水利学报, 2010, 41(2): 173-181.
    (HUANG Mao-song, SUN Hai-zhong, QIAN Jian-gu.Non-coaxial behavior of coarse granular aggregates simulated by DEM[J]. Journal of Hydraulic Engineering, 2010, 41(2): 173-181. (in Chinese))
    [6] HASHIGUCHI K, TSUTSUMI S.Shear band formation analysis in soils by the subloading surface model with tangential stress rate effect[J]. International Journal of Plasticity, 2003, 19(10): 1651-1677.
    [7] 李学丰, 黄茂松, 钱建固. 宏-细观结合的砂土单剪试验非共轴特性分析[J]. 岩土力学, 2013, 34(12): 3417-3424.
    (LI Xue-feng, HUANG Mao-song, QIAN Jian-gu.Analysis of non-coaxial characters of sand for simple shear test with the method of macro-meso-incorporation[J]. Rock and Soil Mechanics, 2013, 34(12): 3417-3424. (in Chinese))
    [8] LI X S, DAFALIAS Y F.A constitutive framework for anisotropic sand including non-proportional loading[J]. Géotechnique, 2004, 54(1): 41-45.
    [9] 黄茂松. 土体稳定与承载特性的分析方法[J]. 岩土工程学报, 2016, 38(1): 1-34.
    (HUANG Mao-song.Analysis methods for stability and bearing capacity of soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 1-34. (in Chinese))
    [10] YU H S, YUAN X.On a class of non-coaxial plasticity models for granular soils[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2006, 462(2067): 725-748.
    [11] YANG Y, YU H S.Numerical simulations of simple shear with non-coaxial soil models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(1): 1-19.
    [12] YANG Y, YU H S.Finite element analysis of anchor plates using non-coaxial models[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(2): 178-187.
    [13] 陈先国, 高波. 地铁近距离平行隧道有限元数值模拟[J]. 岩石力学与工程学报, 2002, 21(9): 1330-1334.
    (CHEN Xian-guo, GAO Bo.2D FEM numerical simulation for closely-spaced parallel tunnels in metro[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1330-1334. (in Chinese))
    [14] 崔蓬勃, 陈晶晶. 高速铁路隧道下穿高速公路地表沉降影响分析[J]. 江苏建筑职业技术学院学报, 2015, 15(2): 21-25.
    (CUI Peng-bo, CHEN Jing-jing.Analysis on influence of ground surface settlement on highway with high-speed railway tunnel passing below[J]. Journal of Jiangsu Jianzhu Institute, 2015, 15(2): 21-25. (in Chinese))
    [15] TSUTSUMI S, HASHIGUCHI K.General non-proportional loading behavior of soils[J]. International Journal of Plasticity, 2005, 21(10): 1941-1969.
    [16] BOOKER J R, DAVIS E H.A general treatment of plastic anisotropy under conditions of plane strain[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(4): 239-250.
    [17] SPENCER A J M. A theory of the kinematics of ideal soils under plane strain conditions[J]. Journal of the Mechanics and Physics of Solids, 1964, 12(5): 337-351.
    [18] HARRIS D.Constitutive equations for planar deformations of rigid-plastic materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(9): 1515-1531.
    [19] HARRIS D.A unified formulation for plasticity models of granular and other materials[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1995, 450(1938): 37-49.
    [20] ODA M, KOISHIKAWA I, HIGUCHI T.Experimental study of anisotropic shear strength of sand by plain strain test[J]. Soils and Foundations, 1978, 18(1): 25-38.
    [21] YUAN R.A non-coaxial theory of plasticity for soils with an anisotropic yield criterion[D]. Nottingham: University of Nottingham, 2015.
    [22] ZHAO Y.In situ soil testing for foundation performance prediction[D]. Cambridge: University of Cambridge, 2008.
    [23] ZHOU B.Tunnelling-induced ground displacements in sand[D]. Nottingham: University of Nottingham, 2015.
    [24] YANG D S.Microscopic study of granular material behaviour under general stress paths[D]. Nottingham: University of Nottingham, 2014.
  • 期刊类型引用(2)

    1. 李鑫,唐贞云,杜修力. 半无限介质多自由度频响函数离散时间有理近似的稳定参数识别. 工程力学. 2024(08): 1-10 . 百度学术
    2. 张聪,冯忠居,王富春,马晓谦,陈慧芸. 强震作用下嵌岩群桩时程响应振动台试验. 应用基础与工程科学学报. 2023(03): 703-714 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2016-06-05
  • 发布日期:  2018-04-24

目录

    /

    返回文章
    返回